Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 Mar 15;10(1):206–215. doi: 10.1111/j.1582-4934.2006.tb00301.x

Age-associated changes in oxidative damage and the activity of antioxidant enzymes in rats with inherited overgeneration of free radicals

Olga Sinitsyna a, Zhanna Krysanova a, A Ishchenko b, Anna E Dikalova a, S Stolyarov c, Nataliya Kolosova a, Elena Vasunina a, G Nevinsky b,*
PMCID: PMC3933112  PMID: 16563232

Abstract

Reactive oxygen species have been hypothesized to play an important role in the process of aging. To investigate the correlation between oxidative stress and accumulation of protein and DNA damage, we have compared the age-dependent levels of protein carbonyl groups and the activities of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase in cytosol and mitochondrial extracts from liver cells of Wistar and OXYS rats. The latter strain is characterized by increased sensitivity to free radicals. Faster age-dependent increase in the level of protein carbonyl groups was found in OXYS as compared with Wistar rats. A complicated enzyme-specific pattern of age-dependent changes in the activities of antioxidant enzymes was observed. Long-term uptake of dietary supplements Mirtilene forte (extract from the fruits of Vaccinium myrtillus L.) or Adrusen zinco (vitamin E complex with zinc, copper, selenium and ω-3 polyunsaturated fatty acids) sharply decreased the level of protein oxidation in cytosol and mitochondrial extracts of hepatocytes of Wistar and of OXYS rats. Both dietary supplements increased the activity of catalase in the liver mitochondria of OXYS rats. Our results are in agreement with the shorter life-span of OXYS and with the mitochondrial theory of aging, which postulates that accumulation of DNA and protein lesions leads to mitochondrial dysfunction and accelerates the process of aging.

Keywords: OXYS rats aging, nuclear and mitochondrial extracts, protein carbonyl groups, antioxidant enzymes

References

  • 1.Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298. [DOI] [PubMed] [Google Scholar]
  • 2.Cathcart R, Schwiers RL, Saul E, Ames BN. Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. Proc Natl Acad Sci USA. 1984;81:5633–7. doi: 10.1073/pnas.81.18.5633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA. 1998;85:6465–7. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Adelman R, Saul RL, Ames BN. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci USA. 1988;85:2706–8. doi: 10.1073/pnas.85.8.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Cutler RG. Antioxidants and aging. Am J Clin Nutr. 1991;53:373S–9S. doi: 10.1093/ajcn/53.1.373S. [DOI] [PubMed] [Google Scholar]
  • 6.Ames BN. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983;221:1256–64. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
  • 7.Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998;78:547–81. doi: 10.1152/physrev.1998.78.2.547. [DOI] [PubMed] [Google Scholar]
  • 8.Allen RG. Free radicals in aging. CPC Press; 1993. pp. 12–23. , Boca Raton, FL: [Google Scholar]
  • 9.Feuers RJ, Weindruch R, Hart RW. Caloric restriction, aging, and antioxidant enzymes. Mutat Res. 1993;295:191–200. doi: 10.1016/0921-8734(93)90020-4. [DOI] [PubMed] [Google Scholar]
  • 10.Gutler RG. Human longevity and aging: possible role of reactive oxygen species. Ann NY Acad Sci. 1991;621:1–28. doi: 10.1111/j.1749-6632.1991.tb16965.x. [DOI] [PubMed] [Google Scholar]
  • 11.Haycock JW, Jones P, Harris JB, Mantle D. Differential susceptibility of human skeletal muscle proteins to free radical induced oxidative damage: a histochemical, immunocytochemical and electron microscopical study in vitro. Acta Neuropathol. 1996;92:331–40. doi: 10.1007/s004010050527. [DOI] [PubMed] [Google Scholar]
  • 12.Halliwell B, Dizgaroglu M. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence. Lancet. 1994;344:721–4. doi: 10.1016/s0140-6736(94)92211-x. [DOI] [PubMed] [Google Scholar]
  • 13.Salganik RI, Solovyova NA, Dikalov SI, Grishava ON, Semenova LA, Popovsky AV. Inherited enhancement of hydroxyl radical generation and lipid peroxidation in the S strain rats results in DNA rearrangements degenerative diseases and premature aging. Biochem Biophys Res Commun. 1994;199:26–33. doi: 10.1006/bbrc.1994.1289. [DOI] [PubMed] [Google Scholar]
  • 14.Inbred Strains of Rats: OXYS. Rat Genome. 1996;2:52–4. [Google Scholar]
  • 15.Ceballos-Picot I, Nicole A, Clement M, Bourre JM, Sinet PM. Age-related changes in antioxidant enzymes and lipid peroxidation in brains of control and transgenic mice overexpressing copper-zinc superoxide dismutase. Mutat Res. 1992;275:281–93. doi: 10.1016/0921-8734(92)90032-k. [DOI] [PubMed] [Google Scholar]
  • 16.Tian L, Cai Q, Wei H. Alterations fo antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic Biol Med. 1998;24:1477–84. doi: 10.1016/s0891-5849(98)00025-2. [DOI] [PubMed] [Google Scholar]
  • 17.Yamamura H, Hayakawa M, Iimura Y, Yamamura H, Hayakawa M, Iimura Y. Application of sucrose-gradient centrifugation for selective isolation of Nocardia spp. from soil. J Appl Microbiol. 2003;95:677–85. doi: 10.1046/j.1365-2672.2003.02025.x. [DOI] [PubMed] [Google Scholar]
  • 18.Lowry OH, Rosenbrough NJ, Farr AL, Randall RG. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75. [PubMed] [Google Scholar]
  • 19.Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbony1 assay. Methods Enzymol. 1994;233:357–63. doi: 10.1016/s0076-6879(94)33041-7. [DOI] [PubMed] [Google Scholar]
  • 20.Beachamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analyt Biochem. 1971;44:276–390. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  • 21.Flohe L, Otting F. Superoxide Dismutase Assay. Methods Enzymol. 1984;105:93–104. doi: 10.1016/s0076-6879(84)05013-8. [DOI] [PubMed] [Google Scholar]
  • 22.Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–30. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
  • 23.Flohe L, Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–21. doi: 10.1016/s0076-6879(84)05015-1. [DOI] [PubMed] [Google Scholar]
  • 24.Cao G, Shukitt-Hale B, Bickford PC, Joseph JA, McEwen J, Prior RL. Hyperoxia-induced changes in antioxidant capacity and the effect of dietary antioxidants. J Appl Physiol. 1999;86:1817–22. doi: 10.1152/jappl.1999.86.6.1817. [DOI] [PubMed] [Google Scholar]
  • 25.Ramirez-Tortosa C, Andersen QM, Gardner PT, Morrice PC, Wood SG, Duthie SJ, Collins AR, Duthie GG. Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radic Biol Med. 2001;31:1033–7. doi: 10.1016/s0891-5849(01)00618-9. [DOI] [PubMed] [Google Scholar]
  • 26.Hayakawa M, Torii K, Sugiyama S, Tanaja M, Ozava T. Age-associated accumilation of 8-hydroxydeoxyguanosine in miticondrial DNA of human diaphragm. Biochem Biophys Res Commun. 1991;178:1023–9. doi: 10.1016/0006-291x(91)91921-x. [DOI] [PubMed] [Google Scholar]
  • 27.Bhuyan KC, Bhuyan DK, Podos SM. Lipid peroxidation in cataracts of the human. Life Sci. 1986;38:1463–71. doi: 10.1016/0024-3205(86)90559-x. [DOI] [PubMed] [Google Scholar]
  • 28.Scharf J, Dorvarat A. 1986. pp. 332–7. Superoxide dismutase molecules in human cataractous lenses Opthal Res.
  • 29.Shigenaga MK, Hagen T, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA. 1994;91:10771–8. doi: 10.1073/pnas.91.23.10771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Kolosova NG, Lebedev PA, Aidagulova SV, Morozkova TS. OXYS Rats as a model of senile cataract. Bull Exp Biol Med. 2003;136:415–9. doi: 10.1023/b:bebm.0000010967.24302.78. [DOI] [PubMed] [Google Scholar]
  • 31.Ishcheno A, Sinitsyna O, Krysanova Zh, Vasyunina E, Saparbaev M, Sidorkina O, Nevinsky G. Age-dependent increase of 8-oxoguanine, hypoxanthine-, and uracil DNA glycosylase activities of liver extracts from OXYS rats with inherited overgeneration of free radicals and Wistar rats. Med Sci Monit. 2003;9:BR16–24. [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES