Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 Mar 15;10(1):225–230. doi: 10.1111/j.1582-4934.2006.tb00303.x

Dobesilate diminishes activation of the mitogen - activated protein kinase ERK1/2 in glioma cells

P Cuevas a,b,*, Diana Diaz-González a, C Garcia-Martin-Córdova b, I Sánchez c, Rosa Maria Lozano c, G Giménez-Gallego c, M Dujovny d
PMCID: PMC3933114  PMID: 16563234

Abstract

Fibroblast growth factors (FGFs) and their receptors, regularly expressed at high levels in gliomas, are further upregulated during the transition of the tumor from low- to high-grade malignancy, and are essential for glioma progression. FGFs induce upregulation of the mitogen-activated protein kinase (MAPK) signaling cascade in cultured glioma cells, which suggests that MAPK pathway participates in the FGF-dependent glioma development. Recently, it has been shown that dobesilate, an inhibitor of FGF mitogenic activity, shows antiproliferative and proapoptotic activities in glioma cell cultures. Accordingly, it should be expected this new synthetic FGF inhibitor to affect the activation levels of MAPK. Here we report that immunocytochemical and Western blot data unequivocally show that treatment of cell cultures with dobesilate causes a significant decrease of the intracellular levels of ERK1/2 activation, one of the components of the MAPK signalling cascade. This finding supports an important role for dobesilate in glioma growth, suggesting that dobesilate should be a treatment to be born in mind for glioma management.

Keywords: glioma, dobesilate, mitogen-activated protein kinase (MAPK)

References

  • 1.Louis DN, Pomeroy SL, Cairncross JG. Focus on central nervous system neoplasia. Cancer Cell. 2002;1:125–8. doi: 10.1016/s1535-6108(02)00040-5. [DOI] [PubMed] [Google Scholar]
  • 2.Berthet P, Farine JC, Barras JP. Calcium dobesilate: pharmacological profile related to its use in diabetic retinopathy. Int J Clin Pract. 1999;53:631–6. [PubMed] [Google Scholar]
  • 3.Cuevas P, Sánchez I, Lozano RM, Giménez-Gallego G. Dobesilate is an angiogenesis inhibitor. Eur J Med Res. 2005;10:369–72. [PubMed] [Google Scholar]
  • 4.Cuevas P, Díaz-González D, Giménez-Gallego G, Dujovny M. Dihydroxi-2,5 benzenesulphonate (dobesilate) elicits growth arrest and apoptosis in glioma cells. Neurol Res. 2005;27:797–800. doi: 10.1179/016164105X63665. [DOI] [PubMed] [Google Scholar]
  • 5.Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49:4682–9. [PubMed] [Google Scholar]
  • 6.Robinson MJ, Gobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997;9:180–6. doi: 10.1016/s0955-0674(97)80061-0. [DOI] [PubMed] [Google Scholar]
  • 7.Chattopadhyay N, Tfeft-Hansen J, Brown EM. PKC, p42/44 MAPK and p38 MAPK regulate hepatocyte growth factor secretion from human astrocytoma cells. Brain Res Mol Brain Res. 2002;102:73–82. doi: 10.1016/s0169-328x(02)00215-2. [DOI] [PubMed] [Google Scholar]
  • 8.Cuevas P, Díaz-González D, Carceller F, Dujovny M. Dual blockade of mitogen-activated protein kinases ERK-1 (p42) and ERK-2 (p44) and cyclic AMP response element binding protein (CREB) by neomycin inhibits glioma cell proliferation. Neurol Res. 2003;25:13–6. doi: 10.1179/016164103101201030. [DOI] [PubMed] [Google Scholar]
  • 9.Hata Y, Rook SL, Aiello LP. Basic fibroblast factor induces expression of VEGF receptor KDR through a protein kinase C and p44/p42 mitogen-activated protein kinase-dependent pathway. Diabetes. 1999;48:1145–55. doi: 10.2337/diabetes.48.5.1145. [DOI] [PubMed] [Google Scholar]
  • 10.Tanghetti E, Ría R, de Ll'Era P, Urbinati C, Rusnati M, Ennas MG, Presta M. Biological activity of substratebound basic fibroblast growth factor (FGF2): recruitment of FGF receptor-1 in endothelial cell adhesion contacts. Oncogene. 2002;21:3889–97. doi: 10.1038/sj.onc.1205407. [DOI] [PubMed] [Google Scholar]
  • 11.Hadari YR, Gotoh N, Kouhara H, Lax I, Schlessinger J. Critical role for the docking-protein FRS2 α in FGF receptor-mediated signal transduction pathways. Proc Natl Acad Sci USA. 2001;98:8578–83. doi: 10.1073/pnas.161259898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signaling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001;22:201–7. doi: 10.1016/s0165-6147(00)01676-x. [DOI] [PubMed] [Google Scholar]
  • 13.Eliceiri BP, Klemke R, Stromblad S, Cheresh DA. Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol. 1998;140:1255–63. doi: 10.1083/jcb.140.5.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.de Lehedde M, Seve M, Sergean N, Wartelle I, Lyon M, Rudland PS, Fernig DG. Fibroblast growth factor-2 stimulation of p42/44 MAPK phosphorylation and IkappaB degradation is regulated by heparan sulfate/heparin in rat mammary fibroblasts. J Biol Chem. 2000;275:33905–10. doi: 10.1074/jbc.M005949200. [DOI] [PubMed] [Google Scholar]
  • 15.Gross JL, Morrison RS, Eidsvoog K, Herblin WF, Komblith PL, de Xter DL. Basic fibroblast growth factor: a potential autocrine regulator of human glioma cell growth. J Neurosci Res. 1990;27:689–96. doi: 10.1002/jnr.490270429. [DOI] [PubMed] [Google Scholar]
  • 16.Morrison RS, Gross JL, Herblin WF, Reilly TM, LaSala PA, Alterman RL, Moskal JR, Komblith PL, de Xter DL. Basic fibroblast growth factor like activity and receptors are expressed in a human glioma cell line. Cancer Res. 1990;50:2524–9. [PubMed] [Google Scholar]
  • 17.Woodgett J. Protein kinases. Oxford University Press Inc; 1994. ; New York; [Google Scholar]
  • 18.D'Angelo G, Struman I, Martial J. Weiner R. Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDA N-terminal fragment of prolactin. Proc Natl Acad Sci USA. 1995;92:6374–8. doi: 10.1073/pnas.92.14.6374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Reditz A, Daum G, Sage EH. Angiostatin diminishes activation of the mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular endothelial cells. J Vasc Res. 1999;36:28–34. doi: 10.1159/000025623. [DOI] [PubMed] [Google Scholar]
  • 20.Cuevas P, Calvo-Pulido M, Lozano RM, Giménez-Gallego G. 2006. Use of topical dobesilate to treat basal cell carcinoma Eur J Med Res (in press)
  • 21.Powell PP, Klagsbrun M. Regulation of bFGF mRNA expression in rat C6 glioma cells. Exp Cell Res. 1993;209:224–30. doi: 10.1006/excr.1993.1305. [DOI] [PubMed] [Google Scholar]
  • 22.Auguste P, Gürsel DB, Lemiére S, Reimers D, Cuevas P, Carceller F, Von Santo J, Bikfalvi A. Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both, angiogenesis-dependent and independent mechanisms. Cancer Res. 2001;61:1717–26. [PubMed] [Google Scholar]
  • 23.Beere HM, Hickman JA. Differentiation: a suitable strategy for cancer chemotherapy. Anticancer Drug Des. 1993;8:299–322. [PubMed] [Google Scholar]
  • 24.Linskey ME, Gilbert MR. Glial differentiation: a review with implications for new directions in neuro-oncology. Neurosurgery. 1995;36:1–22. doi: 10.1227/00006123-199501000-00001. [DOI] [PubMed] [Google Scholar]
  • 25.Cuevas P, Díaz-González D, Dujovny M. Differentiation-inducing activity of neomycin in cultured rat glioma cells. Neurol Res. 2004;26:401–3. doi: 10.1179/016164104225016317. [DOI] [PubMed] [Google Scholar]
  • 26.Bignam A, Dahl D, Rueger DC. Advances in cellular neurobiology. Vol. 1. New York Academic Press; 1989. Glial fibrillary acidic (GFA) protein in normal neural cells and in pathological conditions; pp. 285–310. [Google Scholar]
  • 27.de Ck JH, Eng LF, Bigbee K. Woodcock S. The role of GFAP in the diagnosis of CNS tumors. Acta Neuropathol. 1978;42:183–90. doi: 10.1007/BF00690355. [DOI] [PubMed] [Google Scholar]
  • 28.Wang S, Yang D, Lippman ME. Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. Semin Oncol. 2003;30:133–42. doi: 10.1053/j.seminoncol.2003.08.015. [DOI] [PubMed] [Google Scholar]
  • 29.Pesenti E, Sola F, Mongelli N, Grandi M, Spreafico F. Suramin prevents neovascularization and tumor growth through blocking of basic fibroblast growth factor activity. Br J Cancer. 1992;66:367–72. doi: 10.1038/bjc.1992.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Cuevas P, Reimers D, Díaz-González D, Lozano RM, Giménez-Gallego G. Apoptosis of glioma cells induced by the fibroblast growth factor inhibitor 1,3,6-naphthalenesulfonate. Neurosci Lett. 1999;275:149–51. doi: 10.1016/s0304-3940(99)00752-1. [DOI] [PubMed] [Google Scholar]
  • 31.Cuevas P. Carceller F, Díaz-González D, Reimers D, Fernández M, Lozano RM, González-Corrochano R, Giménez-Gallego G. Abolished angiogenicity and tumorigenicity of rat glioma by 1-naphthalenemonosulfonate. Neurosci Lett. 2001;308:185–8. doi: 10.1016/s0304-3940(01)02006-7. [DOI] [PubMed] [Google Scholar]
  • 32.Lozano RM, Jiménez MA, Santoro J, Rico M, Giménez-Gallego G. Solution structure of acidic fibroblast growth factor bound to 1,3,6-naphthalenetrisulfonate: a minimal model for the anti-tumoral action of suramins and suradistas. J Mol Biol. 1998;281:899–915. doi: 10.1006/jmbi.1998.1977. [DOI] [PubMed] [Google Scholar]
  • 33.Fernández-Tornero C, Lozano RM, Redondo-Horcajo M, Gómez AM, López JC, Quesada E, Uriel C, Valverde S, Cuevas P, Romero A, Giménez-Gallego G. Leads for development of new naphthalenesulfonate derivatives with enhanced antiangiogenic activity: cristal structure of acidic fibroblast growth factor in complex with 5-amino-2-naphathalenesulfonate. J Biol Chem. 2003;278:21774–81. doi: 10.1074/jbc.M212833200. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES