Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;10(2):273–279. doi: 10.1111/j.1582-4934.2006.tb00398.x

The sory of cell secretion: events leading to the dicovery of the ‘porosome’- the universal secretory machinery in cells

S Jefingija 1,*
PMCID: PMC3933120  PMID: 16796798

Abstract

Cell secretio has come age, and a century old quest has been elegantly solved. We have come a long way since earlier observations of what appeared to be ‘fibrillar regions’ at teh cell plasama membrance, and electrophysological studies suggesting the presence of ‘fusion pores’ at the cell plasma membrane where secretion occurs. Finally, the fusion pore or ‘porosome’ has been discovered, and its morpholgy and dynamics determined at nm resolution and in real time in live secretory cells. The porosome has been isolated, its omposition determined at nm resolution and in real time in live secretory cells. The porosme has been isolated, its composition determmined and it has been jkboth structurally and functionally reconsituted n artificial lipid membrance. The discoversy of the porosome as the univeral secretory machinery in cell and the discovery of the molecular mechaninsm of vesicular content expulsion during cell secretin have fially enabled a clear understanding of this important cellular process. This review outlines the fascinating and exciting joumey leding to the dicovery of the porosme, ultimately solving one of the most difficut, significant, and fundamental cellular process- cell seretion.

Keywords: fusion pore/porosme, cell secerton

References

  • 1.Palade GE, Bruns RR. Structural modulations of plas-malemma vesicles. J Cell Biol. 1968;37:633–49. doi: 10.1083/jcb.37.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975;189:347–58. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  • 3.Berger W, Dahl G, Meissner HP. Structural and functional alterations in fused membranes of secretory granules during exocytosis in pancreatic islet cells of the mouse. Cytobiologie. 1975;12:119–39. [Google Scholar]
  • 4.Chi EY, Lagunoff D, Koehler JK. Freeze fracture study of mast cell secretion. Proc Natl Acad Sci USA. 1976;73:2823–7. doi: 10.1073/pnas.73.8.2823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Tandler B, Poulsen JH. Fusion of the envelope of mucous droplets with the luminal plasma membrane in acinar cells of the cat submandibular gland. J Cell Biol. 1976;68:775–81. doi: 10.1083/jcb.68.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Lawson D, Raff MC, Gomperts BD, Fewtrell C, Gilula NB. Molecular events during membrane fusion. A study of exocytosis in rat peritoneal mast cells. J Cell Biol. 1977;72:242–59. doi: 10.1083/jcb.72.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Tilney LG, Clain JG, Tilney MS. Membrane events in the acrosomal reaction of Limulus sperm. Membrane fusion, filament-membrane particle attachment, and the source and formation of new membrane surface. J Cell Biol. 1979;81:229–53. doi: 10.1083/jcb.81.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Chandler DE, Heuser JE. Arrest of membrane fusion events in mast cells by quick-freezing. J Cell Biol. 1980;86:666–74. doi: 10.1083/jcb.86.2.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Heuser JE, Reese TS. Structural changes after transmitter release at the frog neuromuscular junction. J Cell Biol. 1980;88:564–80. doi: 10.1083/jcb.88.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Monck JR, Oberhauser AF, Fernandez JM. The exocy-totic fusion pore interface: a model of the site of neuro-transmitter release. Mol Memb Biol. 1995;12:151–6. doi: 10.3109/09687689509038511. [DOI] [PubMed] [Google Scholar]
  • 11.Ornberg RL, Reese TS. Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes. J Cell Biol. 1981;90:40–54. doi: 10.1083/jcb.90.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Schmidt W, Patzak W, Lingg G, Winkler H. Membrane events in adrenal chromaffin cells during exocytosis: a freeze-etching analysis after rapid cryofixation. Eur J Cell Biol. 1983;32:31–7. [PubMed] [Google Scholar]
  • 13.Breckenridge LJ, Almers W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature. 1987;328:814–7. doi: 10.1038/328814a0. [DOI] [PubMed] [Google Scholar]
  • 14.Breckenridge LJ, Almers W. Final steps in exocytosis observed in a cell with giant secretory granules. Proc Natl Acad Sci USA. 1987;84:1945–9. doi: 10.1073/pnas.84.7.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Zimmerberg J, Curran M, Cohen FS, Brodwick M. Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc Natl Acad Sci USA. 1987;84:1585–9. doi: 10.1073/pnas.84.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Alvarez de Toledo G, Fernández JM. Cell Physiology of Blood. Rockefeller University Press; 1988. The events leading to secretory granule fusion; pp. 334–44. ) [PubMed] [Google Scholar]
  • 17.Spruce AE, Breckenridge LJ, Lee AK, Almers W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron. 1990;4:643–54. doi: 10.1016/0896-6273(90)90192-i. [DOI] [PubMed] [Google Scholar]
  • 18.Alvarez de Toledo G, Fernández-Chaócn R, Fernández JM. Release of secretory products during transient vesicle fusion. Nature. 1993;363:554–8. doi: 10.1038/363554a0. [DOI] [PubMed] [Google Scholar]
  • 19.Chow RH, von Rüden R, Neher E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature. 1992;356:60–3. doi: 10.1038/356060a0. [DOI] [PubMed] [Google Scholar]
  • 20.Monck JR, Alvarez de Toledo G, Fernandez JM. Tension in secretory granule membranes causes extensive membrane transfer through the exocytotic fusion pore. Proc Natl Acad Sci USA. 1990;87:7804–8. doi: 10.1073/pnas.87.20.7804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Fernandez JM, Neher E, Gomperts BD. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature. 1984;312:453–5. doi: 10.1038/312453a0. [DOI] [PubMed] [Google Scholar]
  • 22.Monck JR, Fernandez JM. The exocytotic fusion pore and neurotransmitter release. Neuron. 1994;12:707–16. doi: 10.1016/0896-6273(94)90325-5. [DOI] [PubMed] [Google Scholar]
  • 23.Jena BP. Exocytotic fusion: total or transient. Cell Biol Int. 1997;21:257–9. doi: 10.1006/cbir.1997.0159. [DOI] [PubMed] [Google Scholar]
  • 24.Jena BP. Discovery of the porosome: revealing the molecular mechanism of secretion and membrane fusion in cells. J Cell Mol Med. 2004;8:1–21. doi: 10.1111/j.1582-4934.2004.tb00255.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Schneider SW, Sritharan KC, Geibel JP, Oberleithner H, Jena BP. Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proc Natl Acad Sci USA. 1997;94:316–21. doi: 10.1073/pnas.94.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Fernandez JM. Cellular and molecular mechanics by atomic force microscopy: Capturing the exocytotic fusion pore in vivo? Proc Natl Acad Sci USA. 1997;94:9–10. doi: 10.1073/pnas.94.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Monck JR, Fernandez JM. The exocytic fusion pore. J Cell Biol. 1995;119:1395–404. doi: 10.1083/jcb.119.6.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Cho SJ, Quinn AS, Stromer MH, Dash S, Cho J, Taatjes DJ, Jena BP. Structure and dynamics of the fusion pore in live cells. Cell Biol Int. 2002;26:35–42. doi: 10.1006/cbir.2001.0849. [DOI] [PubMed] [Google Scholar]
  • 29.Jena BP, Cho SJ, Jeremic A, Stromer MH, Abu-Hamdah R. Structure and composition of the fusion pore. Biophys J. 2003;84:1337–43. doi: 10.1016/S0006-3495(03)74949-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Jeremic A, Kelly M, Cho SJ, Stromer MH, Jena BP. Reconstituted fusion pore. Biophys J. 2003;85:2035–43. doi: 10.1016/S0006-3495(03)74631-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Craciun C. Elucidation of cell secretion: pancreas led the way. Pancreatology. 2004;4:487–9. doi: 10.1159/000080230. [DOI] [PubMed] [Google Scholar]
  • 32.Cho W-J, Jeremic A, Jena BP. Direct interaction between SNAP-23 and L-type calcium channel. J Cell Mol Med. 2005;9:380–6. doi: 10.1111/j.1582-4934.2005.tb00363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Jeremic A, Cho W-J, Jena BP. Cholesterol is critical to the integrity of neuronal porosome/fusion pore Ultramicroscopy (published on-line April'06) [DOI] [PubMed]
  • 34.Cho SJ, Jeftinija K, Glavaski A, Jeftinija S, Jena BP, Anderson LL. Structure and dynamics of the fusion pores in live GH-secreting cells revealed using atomic force microscopy. Endocrinology. 2002;143:1144–8. doi: 10.1210/endo.143.3.8773. [DOI] [PubMed] [Google Scholar]
  • 35.Cho SJ, Wakade A, Pappas GD, Jena BP. New structure involved in transient membrane fusion and exocytosis. Ann New York Acad Sci. 2002;971:254–6. doi: 10.1111/j.1749-6632.2002.tb04471.x. [DOI] [PubMed] [Google Scholar]
  • 36.Jena BP. Molecular machinery and mechanism of cell secretion. Exp Biol Med. 2005;230:307–19. doi: 10.1177/153537020523000504. [DOI] [PubMed] [Google Scholar]
  • 37.Cho W-J, Jeremic A, Rognlien KT, Zhvania MG, Lazrishvili I, Tamar B, Jena BP. Structure, isolation, composition and reconstitution of the neuronal fusion pore. Cell Biol Int. 2004;28:699–708. doi: 10.1016/j.cellbi.2004.07.004. [DOI] [PubMed] [Google Scholar]
  • 38.Kelly M, Cho WJ, Jeremic A, Abu-Hamdah R, Jena BP. Vesicle swelling regulates content expulsion during secretion. Cell Biol Int. 2004;28:709–16. doi: 10.1016/j.cellbi.2004.07.005. [DOI] [PubMed] [Google Scholar]
  • 39.Cho SJ, Cho J, Jena BP. The number of secretory vesi-cles remains unchanged following exocytosis. Cell Biol Int. 2002;26:29–33. doi: 10.1006/cbir.2001.0848. [DOI] [PubMed] [Google Scholar]
  • 40.Lawson D, Fewtrell C, Gomperts B, Raff M. Anti-immunoglobulin induced histamine secretion by rat peritoneal mast cells studied by immuno ferritin electron microscopy. J Exp Med. 1975;142:391–402. doi: 10.1084/jem.142.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Lee JS, Mayes MS, Stromer MH, Scanes CG, Jeftinija S, Anderson LL. Number of secretory vesicles in growth hormone cells of the pituitary remains unchanged after secretion. Exp Biol Med. 2004;229:291–302. doi: 10.1177/153537020422900707. [DOI] [PubMed] [Google Scholar]
  • 42.Jena BP, Schneider SW, Geibel JP, Webster P, Oberleithner H, Sritharan KC. Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc Natl Acad Sci USA. 1997;94:13317–22. doi: 10.1073/pnas.94.24.13317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Cho SJ, Sattar AK, Jeong EH, Satchi M, Cho JA, Dash S, Mayes MS, Stromer MH, Jena BP. Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc Natl Acad Sci USA. 2002;99:4720–24. doi: 10.1073/pnas.072083499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Jeremic A, Cho W-J, Jena BP. Involvement of water channels in synaptic vesicle swelling. Exp Biol Med. 2005;230:674–80. doi: 10.1177/153537020523000910. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES