Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;10(2):292–308. doi: 10.1111/j.1582-4934.2006.tb00400.x

Repair and regeneration: opportunities for carcinogenesis from tissue stem cells

Scott V Perryman 1, Karl G Sylvester 1,*
PMCID: PMC3933122  PMID: 16796800

Abstract

This review will discuss the mechanisms of repair and regeneration in various tissue types and how dysregulation of these mechaisms may lead to cancer. Normal homeostasis involves a careful balance between cell loss and cell renewal. Stem and progenitor cells perform these biologic processes as the functional units of regeneration during both tissue homeostasis and repair. The concept of tissue stem cells capable of giving rise to all differentiated cells within a given tissue led to the concept of a cellulr hierarchy in tissues and in tumors. Thus, only a few cells may be necessary and sufficient for tissue repair or tumor regeneration. This is known as the hierarchical model of tumorigenesis. This report will compare this model with the stochastic model of tumorigenesis. Under normal circumstances, the processes of tissue regeneration or homeostasis are tightly regulated by several morphogen pathways to prevent excessive or inappropriate cell growth. This review presents the recent evidence that dysregulation of these processes may provide opportunities for carcinogenesis for the long-lived, highly proliferative tissue stem cell population. New findings of cancer initiating tissue stem cells identified in several solid and circulating cancers including breast, brain hematopoietic tumors will also be reviewed. Finally, this report reviews the cellular biology of cancer and its relevance to the development of more effective cancer treatment protocols.

Keywords: cancer stem cell, tissue stem cell, cellular hierarchy, regeneration, cancer

References

  • 1.Gilbert CW, Lajtha L. Kinetics of a bone marrow stem-cell population. Ann N Y Acad Sci. 1964;113:742–52. doi: 10.1111/j.1749-6632.1964.tb40701.x. [DOI] [PubMed] [Google Scholar]
  • 2.Ponder BAJ, Schmidt GH, Wilkinson MM, Wood MJ, Monk M, Reid A. Derivation of mouse intestinal crypts from single progenitor cells. Nature. 1985;313:689–91. doi: 10.1038/313689a0. [DOI] [PubMed] [Google Scholar]
  • 3.Health JP. Epithelial cell migration in the intestine. Cell Biol Int. 1996;20:139–46. doi: 10.1006/cbir.1996.0018. [DOI] [PubMed] [Google Scholar]
  • 4.Rochat A, Kobayashi K, Barrandon Y. Location of stem cells of human hair follicles by clonal analysis. Cell. 1994;76:1063–73. doi: 10.1016/0092-8674(94)90383-2. [DOI] [PubMed] [Google Scholar]
  • 5.Hunter JA, Savin JA, Dahl MV. Clinical Dermatology. 2nd. Blackwell Science; 1995. ed. Malden: [Google Scholar]
  • 6.Potten CS. Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int Rev Cytol. 1981;69:271–318. doi: 10.1016/s0074-7696(08)62326-8. [DOI] [PubMed] [Google Scholar]
  • 7.Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci USA. 2003;100:11830–5. doi: 10.1073/pnas.1734203100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Ito M. Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11:1351–4. doi: 10.1038/nm1328. [DOI] [PubMed] [Google Scholar]
  • 9.Millar SE. Molecular mechanisms regulating hair follicel development. J Invest Dermatol. 2002;118:216–25. doi: 10.1046/j.0022-202x.2001.01670.x. [DOI] [PubMed] [Google Scholar]
  • 10.Ito M, Kizawa K, Hamada K, Cotsarelis G. Hair folicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation. 2004;72:548–57. doi: 10.1111/j.1432-0436.2004.07209008.x. [DOI] [PubMed] [Google Scholar]
  • 11.Higgins GM, Anderson RM. Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol. 1931;12:186–202. [Google Scholar]
  • 12.Koniaris LG, Mckillop IH, Schwartz SI, Zimmers TA. Liver regeneration. J Am Coll Surg. 2003;197:634–59. doi: 10.1016/S1072-7515(03)00374-0. [DOI] [PubMed] [Google Scholar]
  • 13.Fausto N, Campbell JS. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev. 2003;120:117–30. doi: 10.1016/s0925-4773(02)00338-6. [DOI] [PubMed] [Google Scholar]
  • 14.Fausto N. Oval cells and liver carcinogenesis: an analysis of cell lineages in hepatic tumors using oncogene transfection techniques. Prog Clin Biol Res. 1990;331:325–34. [PubMed] [Google Scholar]
  • 15.Evarts RP, Nagy R, Marsden E, Ehorgeirsson SS. A precursor product relationip exists between oval cells and hepatocytes in rat liver. Carcinogenesis. 1987;8:1730–40. doi: 10.1093/carcin/8.11.1737. [DOI] [PubMed] [Google Scholar]
  • 16.Lemire JM, Shiojiri N, Fausto N. Oval cell proliferation and the orifin of small hepatocytes in liver injury induced by d-galactosamine. Am J Pathol. 1991;139:535–52. [PMC free article] [PubMed] [Google Scholar]
  • 17.Lowes KN, Brennan BA, Yeoh GC, Olynyk JK. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am J Pathol. 1999;154:537–41. doi: 10.1016/S0002-9440(10)65299-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Loomes KM, Taichman DB, Glover CL, Williams PT, Markowitz JE, Piccoli DA, Baldwin HS, Oakey RJ. Characterization of Notch receptor expression in the developing mammalian heart and liver. Am J Med Genet. 2002;112:181–9. doi: 10.1002/ajmg.10592. [DOI] [PubMed] [Google Scholar]
  • 19.Tanimizu N, Miyamima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci. 2004;117:3165–74. doi: 10.1242/jcs.01169. [DOI] [PubMed] [Google Scholar]
  • 20.Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis-A look outside the nucleus. Science. 2000;287:1606–9. doi: 10.1126/science.287.5458.1606. [DOI] [PubMed] [Google Scholar]
  • 21.Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9. doi: 10.1056/NEJM198612253152606. [DOI] [PubMed] [Google Scholar]
  • 22.Haddow A. Molecular repair, wound healing, and carcinogenesis: tumor production a possible overhealing. Adv Cancer Res. 1972;16:181–234. doi: 10.1016/s0065-230x(08)60341-3. [DOI] [PubMed] [Google Scholar]
  • 23.Hsu H. Jeng Y, Mao TL, Chu JS, Lai PL, Peng SY. Beta-catenin mutations are associated with a subset of lowstage hepatocellular carcinoma negative for hepatitis B virus and with favourable prognosis. Am J Pathol. 2000;157:763–70. doi: 10.1016/s0002-9440(10)64590-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Tien LT, Ito M, Nakao M, Niino D, Serik M, Nakashima M, Wen CY, Yatsuhashi H, Ishibashi H. Expression of beta-catenin in hepatocellular carcinoma. World J Gastroenterol. 2005;11:2398–401. doi: 10.3748/wjg.v11.i16.2398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Bosch FX, Ribes J, Cleries R, Diaz M. Epidermiology of hepatocellular carcinoma. Clin Liver Dis. 2005;9:191–211. doi: 10.1016/j.cld.2004.12.009. [DOI] [PubMed] [Google Scholar]
  • 26.Wu X, Groves FD, McLaughlin CC, Jemal A, Martin J, Chen VW. Cancer incidence patterns among adolescents and young adults in the United States. Cancer Causes Control. 2005;16:309–20. doi: 10.1007/s10552-004-4026-0. [DOI] [PubMed] [Google Scholar]
  • 27.Smith GH, Strickland P, Daniel CW. Putative epithelial stem cell loss corresponds with mammary growth senescence. Cell Tissue Res. 2002;310:313–20. doi: 10.1007/s00441-002-0641-9. [DOI] [PubMed] [Google Scholar]
  • 28.Ohtani N, Yamakoshi K, Takahashi A, Hara E. The p16INK4a-Rb pathway: molecular link between cellular senescence and tumor suppression. J Med Invest. 2004;51:146–53. doi: 10.2152/jmi.51.146. [DOI] [PubMed] [Google Scholar]
  • 29.Obana K, Yang HW, Piao HY, Taki T, Hashizume K, Hanada R, Yamamoto K, Tanaka Y, Toyoda Y, Takita J, Tsuchida Y, Hayashi Y. Aberrations of p16INK4A, p14ARF and p15INK4B genes in pediatric solid tumors. Int J Oncol. 2003;23:1151–7. [PubMed] [Google Scholar]
  • 30.Lapidot T. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Natue. 1994;367:645–8. doi: 10.1038/367645a0. [DOI] [PubMed] [Google Scholar]
  • 31.Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8. doi: 10.1073/pnas.0530291100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Singh SKHC, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature. 2004;432:393–401. doi: 10.1038/nature03128. [DOI] [PubMed] [Google Scholar]
  • 33.Singh SK. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8. [PubMed] [Google Scholar]
  • 34.Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7. doi: 10.1038/nm0797-730. [DOI] [PubMed] [Google Scholar]
  • 35.Cozzio A, Passegue E, Ayton P, Karsunky H, Cleary M, Weissman I. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 2003;17:3029–35. doi: 10.1101/gad.1143403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Huntly BJP, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR, Akashi K, Gillialand G. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 2004;6:587–96. doi: 10.1016/j.ccr.2004.10.015. [DOI] [PubMed] [Google Scholar]
  • 37.Bond GG, McLaren EA, Sabel FL, Bodner KM, Lipps TE, Cook RR. Livder biliary tract cancer among chemical workers. Am J Ind Med. 1990;18:19–24. doi: 10.1002/ajim.4700180103. [DOI] [PubMed] [Google Scholar]
  • 38.Godtfredsen NS, Prescott E, Osler M. Effect of smoking reduction on lung cancer risk. JAMA. 2005;294:1505–10. doi: 10.1001/jama.294.12.1505. [DOI] [PubMed] [Google Scholar]
  • 39.Hecht SS. Environmental tobacco smoke and lung cancer: the emerging role of carcinogen biomarkers and molecular epidemiology. J Natl Cancer Inst. 1994;86:1369–70. doi: 10.1093/jnci/86.18.1369. [DOI] [PubMed] [Google Scholar]
  • 40.Vineis P, Marinelli D, Autrup H, Brockmoller J, Cascorbi I, Daly AK, Golka K, Okkels H, Risch A, Rothman N, Sim E, Taioli E. Current smoking, occupation, N-acetyltransferase-2 and bladder cancer: a pooled analysis of genotype-based studies. Cancer Epidemiol Biomarkers Prev. 2001;10:1249–52. [PubMed] [Google Scholar]
  • 41.Vineis P, Kogevinas M, Simonato L, Brennan L, Boffetta P. Levelling-off of the risk of lung and bladder cancer in heavy smokers: an analysis based on multicentric case-control studies and a metabolic interpretation. Mutat Res. 2000;463:103–10. [PubMed] [Google Scholar]
  • 42.Marsit CJ, Karagas MR, Danaee H, Liu M, Andrew A, Schned A, Nelson HH, Kelsey KT. Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis. 2006;27:112–6. doi: 10.1093/carcin/bgi172. [DOI] [PubMed] [Google Scholar]
  • 43.Linsell CA. Environmental chemical carcinogens and liver cancer. J Toxicol Environ Health. 1979;5:173–81. [PubMed] [Google Scholar]
  • 44.White RL. Colon cancer. Molecular biology of the APC protein. Pathol Biol. 1997;45:240–4. [PubMed] [Google Scholar]
  • 45.Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science. 1997;275:1787–90. doi: 10.1126/science.275.5307.1787. [DOI] [PubMed] [Google Scholar]
  • 46.Shang XZ, Zhu H, Lin K, Tu Z, Chen J, Nelson DR, Liu C. Stabilized bT-catenin promotes hepatocyte proliferation and inhibits TNF α-induced apoptosis. Lab Invest. 2004;84:332–41. doi: 10.1038/labinvest.3700043. [DOI] [PubMed] [Google Scholar]
  • 47.Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P. Regulation of intracellular β-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci USA. 1995;92:3046–50. doi: 10.1073/pnas.92.7.3046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Ha NC, Tonuzuka T, Stamo JL, Choi HJ, Weis WI. Mechanism of phosphorylation-dependent binding of APC to β-catenin and its role in β-catenin degradation. Mol Cell. 2004;15:511–21. doi: 10.1016/j.molcel.2004.08.010. [DOI] [PubMed] [Google Scholar]
  • 49.Nhieu JT, Renard CA, Wei Y, Cherqui D, Zafrani ES, Buendia MA. Nuclear accumulation of mutated β-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol. 1999;155:709–14. doi: 10.1016/s0002-9440(10)65168-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Perez-Losada J, Balmain A. Stem-Cell hierarchy in skin cancer. Nature. 2003;3:434–43. doi: 10.1038/nrc1095. [DOI] [PubMed] [Google Scholar]
  • 51.Sporn M. Roberts A. Peptide growth factors and inflammation, tissue repair, and cancer. J Clin Invest. 1986;78:329–32. doi: 10.1172/JCI112580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004;432:324–31. doi: 10.1038/nature03100. [DOI] [PubMed] [Google Scholar]
  • 53.Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Hepatitis C infection and the increasing incidence of hepatocellular carcinoma: a population-based study. Gastroenterology. 2004;127:1372–80. doi: 10.1053/j.gastro.2004.07.020. [DOI] [PubMed] [Google Scholar]
  • 54.Tanizaki H, Ryu M, Kinoshita T, Kawano N, Konishi M, Cho A, Nakatsura T, Natsume T, Takahashi S, Sugita M, Izuishi K, Yoshino M, Furuse J, Iwasaki M, Tsubono Y. Comparison of clinical features and survival in patients with hepatitis B and C virus-related hepatocel-lular carcinoma. Jpn J Clin Oncol. 1997;27:67–70. doi: 10.1093/jjco/27.2.67. [DOI] [PubMed] [Google Scholar]
  • 55.Kaplan DE, Reddy KR. Rising incidence of hepatocellular carcinoma: the role of hepatitis B and C; the impact on transplantation and outcomes. Clin Liver Dis. 2003;7:683–714. doi: 10.1016/s1089-3261(03)00060-6. [DOI] [PubMed] [Google Scholar]
  • 56.Sun Z, Lu P, Gail MH, Pee D, Zhang Q, Ming L, Wang J, Wu Y, Liu G, Wu Y, Zhu Y. Increased risk of hepatocellular carcinoma in male hepatitis B surface antigen carriers with chronic hepatitis who have deectable urinary aflatoxin metabolite M1. Hepathology. 1999;30:379–83. doi: 10.1002/hep.510300204. [DOI] [PubMed] [Google Scholar]
  • 57.Munkholm P. the incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther. 2003;18:1–5. doi: 10.1046/j.1365-2036.18.s2.2.x. [DOI] [PubMed] [Google Scholar]
  • 58.Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, McKeown-Eyssen G, Summers RW, Rothstein R, Burke CA, Snover DC, Church TR, Allen JI, Beach M, Beck GJ, Bond JH, Byers T, Greenberg ER, Mandel JS, Marcon N, Mott LA, Pearson L, Saibil F, van Stolk RU. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med. 2003;348:891–9. doi: 10.1056/NEJMoa021735. [DOI] [PubMed] [Google Scholar]
  • 59.Yau T, Chan C, Chan KL, Lee MF, Wong CM, Fan ST, Ng IOL. HDPR1, a novel inhibitor of the Wnt/Beta-catenin signaling, is frequently downregulated in hepatocellular carcinoma: involvement of methylation-mediated gene silencing. Oncogene. 2005;24:1607–14. doi: 10.1038/sj.onc.1208340. [DOI] [PubMed] [Google Scholar]
  • 60.Watt FM. Unexpected Hedgehog-Wnt interactions in epithelial differentiation. Trends Mol Med. 2004;10:577–80. doi: 10.1016/j.molmed.2004.10.008. [DOI] [PubMed] [Google Scholar]
  • 61.Monga SP, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK. Changes in WNT/β-catenin pathyway during regulated growth in rat liver regeneration. Nature. 2001;432:324–31. doi: 10.1053/jhep.2001.23786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.van den Brink GR, Bleuming SA, Hardwick JC, Schepman BL, Offerhaus G, Keller J, Nielsen C, Gaffield W, van Deventer SJ, Roberts DJ, Peppelenbosch MP. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet. 2004;36:277–82. doi: 10.1038/ng1304. [DOI] [PubMed] [Google Scholar]
  • 63.Berman D, Karhadkar S, Hallahan A, Pritchard J, Eberhart C, Watkins DN, Chen J, Cooper M, Taipale J, Olson J, Beachy P. Medulloblastoma growth inhibition by Hedgehog pathyway blockade. Science. 2002;297:1559–61. doi: 10.1126/science.1073733. [DOI] [PubMed] [Google Scholar]
  • 64.De La Coste, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellulr carcinomas. Proc Natl Acad Sci USA. 1998;95:8847–51. doi: 10.1073/pnas.95.15.8847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Niemann C, Unden AB, Lyle S, Zouboulis CC, Toftgard R. Watt FM. Indian Hedgehog and β-catenin signaling: Rolie in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci USA. 2003;100:11873–80. doi: 10.1073/pnas.1834202100. &. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Battle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, va den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H. The β-Catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111:241–50. doi: 10.1016/s0092-8674(02)01014-0. [DOI] [PubMed] [Google Scholar]
  • 67.van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Joureiro J, Ypma A, Hursh D, Jones T, Bejsovec A, Peifer M, Mortin M, Clevers H. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell. 1997;88:789–99. doi: 10.1016/s0092-8674(00)81925-x. [DOI] [PubMed] [Google Scholar]
  • 68.Riese J, Yu X, Munnerlyn A, Eresh S, Hsu SC, Grosschedl R, Bienz M. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell. 1997;88:777–87. doi: 10.1016/s0092-8674(00)81924-8. [DOI] [PubMed] [Google Scholar]
  • 69.Gregorieff A, Clevers H. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev. 2005;19:877–90. doi: 10.1101/gad.1295405. [DOI] [PubMed] [Google Scholar]
  • 70.Bhatia N, Spiegelman WS. Activation of Wnt/β-Catenin/Tcf signaling in mouse skin carcinogenesis. Mol Carcinog. 2005;42:213–21. doi: 10.1002/mc.20077. [DOI] [PubMed] [Google Scholar]
  • 71.Gos KH, Groden J. Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol. 2000;18:1967–79. doi: 10.1200/JCO.2000.18.9.1967. [DOI] [PubMed] [Google Scholar]
  • 72.Bodmer WF, Bailey CJ, Bodmer J. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 1987;328:614–6. doi: 10.1038/328614a0. [DOI] [PubMed] [Google Scholar]
  • 73.Hamilton SR, Lui B, Parsons RE. The molecular basis of Turcot's syndrome. N Engl J Med. 1995;332:839–47. doi: 10.1056/NEJM199503303321302. [DOI] [PubMed] [Google Scholar]
  • 74.Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kuhl M, Wedlich D, Birchmeier W. Functional interaction of an axin homolog, conduction, with β-catenin, APC, and GSK3β. Science. 1998;280:596–9. doi: 10.1126/science.280.5363.596. [DOI] [PubMed] [Google Scholar]
  • 75.Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munemitsu S, Polakis P. Association of the APC gene product with β-catenin. Science. 1993;262:1731–4. doi: 10.1126/science.8259518. [DOI] [PubMed] [Google Scholar]
  • 76.Su LK, Vogelstein B, Kinzler KW. Association of the APC tumor supressor protein with catenins. Science. 1993;262:1734–7. doi: 10.1126/science.8259519. [DOI] [PubMed] [Google Scholar]
  • 77.Shutman M, Zhurinsky J, Simcha I, Albanese C, D'amico M. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci USA. 1999;96:5322–7. doi: 10.1073/pnas.96.10.5522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Ingham PW, McMahon AP. Hedgehog signaling in animal development paradigms and principles. Genes Dev. 2001;15:3059–87. doi: 10.1101/gad.938601. [DOI] [PubMed] [Google Scholar]
  • 79.Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL, Dudek H, MaMahon AP, Fishell G. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron. 2003;39:937–50. doi: 10.1016/s0896-6273(03)00561-0. [DOI] [PubMed] [Google Scholar]
  • 80.Palma V, Ruiz I, Altaba A. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development. 2004;131:337–45. doi: 10.1242/dev.00930. [DOI] [PubMed] [Google Scholar]
  • 81.Palma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz I, Altaba A. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development. 2005;132:335–44. doi: 10.1242/dev.01567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Merle P, de la Monte S, Kim M, Herrmann M, Tanaka S, Von Dem Bussche A, Kew MC, Trepo C, Wands JR. Functional consequences of Frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology. 2004;127:1110–22. doi: 10.1053/j.gastro.2004.07.009. [DOI] [PubMed] [Google Scholar]
  • 83.Cagatay T, Ozturk M. P53 mutation as a source of aberrant beta-catenin accumulation in cancer cells. Oncogene. 2002;21:7971–80. doi: 10.1038/sj.onc.1205919. [DOI] [PubMed] [Google Scholar]
  • 84.Merle P, Kim M, Herrmann M, Gupte A, Lefrancois L, Califano S, Tre Po C, Tanaka S, Vitvitski L, Monte Sde L, Wands JR. Oncogenic role of the frizzled-7/β-catenin pathway in hepatocellular carcinoma. J Hepatol. 2005;43:854–62. doi: 10.1016/j.jhep.2005.05.018. [DOI] [PubMed] [Google Scholar]
  • 85.Heitzler P, Simpson P. The choice of cell fate in the epidermis of Drosophila. Cell. 1991;64:1083–92. doi: 10.1016/0092-8674(91)90263-x. [DOI] [PubMed] [Google Scholar]
  • 86.Struhl G, Greenwald I. Presenilin is required for activity and nuclear access of Notch in drosophila. Nature. 1999;398:522–9. doi: 10.1038/19091. [DOI] [PubMed] [Google Scholar]
  • 87.Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch Signals controls the fate of immature progenitor cells in the intestine. Nature. 2005;435:964–8. doi: 10.1038/nature03589. [DOI] [PubMed] [Google Scholar]
  • 88.Lai K, Kaspar BK, Gage FH, Schaffer DV. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci. 2003;6:21–7. doi: 10.1038/nn983. [DOI] [PubMed] [Google Scholar]
  • 89.Lee HY, Kieber M, Hari L, Brault V, Suter U, Taketo MM, Kemler R, Sommer L. Instructive role of Wnt/β-catenin in sensory fate specification in neural crest stem cells. Science. 2004;303:1020–3. doi: 10.1126/science.1091611. [DOI] [PubMed] [Google Scholar]
  • 90.Hitoshi S, Alexspm T. Tropepe V, Donoviel D. Ella AJ, Nye JS, Conlon RA, Mak TW, Bernstein A, van der Kooy D. Notch pathway molecules are essential for the maintenance, but not the generation, of mamalian neural stem cells. Genes Dev. 2002;16:864–58. doi: 10.1101/gad.975202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Birnz M, Clevers H. Linking colorectal cancer to wnt signalilng. Cell. 2002;103:311–20. doi: 10.1016/s0092-8674(00)00122-7. [DOI] [PubMed] [Google Scholar]
  • 92.Murone M, Rosenthal A, DeSauvage FJ. Sonic hedgehog singnaling by the Patched-Smoothened receptor complex. Curr Biol. 1999;9:76–84. doi: 10.1016/s0960-9822(99)80018-9. [DOI] [PubMed] [Google Scholar]
  • 93.Kalderon D. Transducing the hedgehog signal. Cell. 2000;103:371–4. doi: 10.1016/s0092-8674(00)00129-x. [DOI] [PubMed] [Google Scholar]
  • 94.Taimpale J. Beachy pA The Hedgehog and Wnt signalling pathways in cancer. Nature. 2001;411:349–54. doi: 10.1038/35077219. [DOI] [PubMed] [Google Scholar]
  • 95.Rubin JB, Rowitch D. Medulloblastoma: a problem of develdomental biology. Cancer Cell. 2002;2:7–8. doi: 10.1016/s1535-6108(02)00090-9. [DOI] [PubMed] [Google Scholar]
  • 96.Leung C, Lingbeek M, Sahkhova O, Liu J, Tanger E, Saremaslani P, van Lohulzen M, Marino S. Bmi-1 is essential for cerebellar development and is overxpressed in human medulloblastomas. Nature. 2004;428:337–41. doi: 10.1038/nature02385. [DOI] [PubMed] [Google Scholar]
  • 97.Sawa M, Yamamoto K, Yokozawa T, Kiyoi H, Hishida A, Kajiguchi T, Seto M, Kohno A, Kitamura K, Itoh Y, Asouu N, Hamajima N, Emi N, Naoe T. BMI-1 is highly expressed in MO-subtype acute myeloid leukemia. Int J Hematol. 2005;82:42–7. doi: 10.1532/IJH97.05013. [DOI] [PubMed] [Google Scholar]
  • 98.Bhardwaj G, Murdoch B, Wu D, Baker DP, Wiliams KP, Chadwick K, Ling LE, Karanu FN, Bhatia M. Sonic hedgehog induces the proliferation of primitive human hematopoietilc cells via BMP regulation. Nat Immunol. 2001;2:172–80. doi: 10.1038/84282. [DOI] [PubMed] [Google Scholar]
  • 99.Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H, Ema H, Kamijo T, Katoch-Fukui Y, Koseki H, van Lohuizen M, Nakauchi H. Enhanced self-renewal of hematopoietilc stem cells mediated by the polycomb gene product Bmi-1. Immunity. 2004;21:843–51. doi: 10.1016/j.immuni.2004.11.004. [DOI] [PubMed] [Google Scholar]
  • 100.Lessard J, Baban S, Sauvageau G. Stage- specific expression of polycomb group genes in human bone marrow cells. Bolld. 1998;91:1216–24. [PubMed] [Google Scholar]
  • 101.Lessard J, Sauvageau G. Bmi-1 determines the proliferative capicity of normal and leukaemic stem cells. Nature. 2003;423:255–60. doi: 10.1038/nature01572. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES