Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;10(2):429–458. doi: 10.1111/j.1582-4934.2006.tb00410.x

Insights into the interstitium of ventricular myocardium: interstitial Cajal-like cells (ICLC)

LM Popescu a,b,*, Mihaela Gherghiceanu a, ME Hinescu a,b, D Cretoiu a,b, Laura Ceafalan b, T Regalia b, AC Popescu b, Carmen Ardeleanu b, E Mandache a
PMCID: PMC3933132  PMID: 16796810

Abstract

We have previously described interstitial Cajal-like cells (ICLC) in human atrial myocardium. Several complementary approaches were used to verify the existence of ICLC in the interstitium of rat or human ventricular myocardium: primary cell cultures, vital stainings (e.g.: methylene blue), traditional stainings (including silver impregnation), phase contrast and non-conventional light microscopy (Epon-embedded semithin sections), transmission electron microscopy (TEM) (serial ultrathin sections), stereology, immunohistochemistry (IHC) and immunofluorescence (IF) with molecular probes. Cardiomyocytes occupy about 75% of rat ventricular myocardium volume. ICLC represent ∼32% of the number of interstitial cells and the ratio cardiomyocytes/ICLC is about 70/1. In the interstitium, ICLC establish close contacts with nerve fibers, myocytes, blood capillaries and with immunoreactive cells (stromal synapses). ICLC show characteristic cytoplasmic processes, frequently two or three, which are very long (tens up to hundreds of μm), very thin (0.1-0.5μm thick), with uneven caliber, having dilations, resulting in a moniliform aspect. Gap junctions between such processes can be found. Usually, the dilations are occupied by mitochondria (as revealed by Janus green B and Mito Tracker Green FM) and elements of endoplasmic reticulum. Characteristically, some prolongations are flat, with a veil-like appearance, forming a labyrinthic system. ICLC display caveolae (about 1 caveola/1μm cell membrane length, or 2-4% of the relative cytoplasmic volume, Mitochondria and endoplasmic reticulum (rough and smooth) occupy 5-10% and 1-2% of cytoplasmic volume, respectively. IHC revealed positive staining for CD34, EGFR and vimentin and, only in a few cases for CD117. IHC was negative for: desmin, CD57, tau, chymase, tryptase and CD13. IF showed that ventricular ICLC expressed connexin 43. We may speculate that possible ICLC roles might be: intercellular signaling (neurons, myocytes, capillaries etc.) and/or chemomechanical sensors. For pathology, it seems attractive to think that ICLC might participate in the process of cardiac repair/remodeling, arrhythmogenesis and, eventually, sudden death.

Keywords: ventricular myocardium, interstitial cells of Cajal, Cajal-like cells, cell processes, caveolae, stromal synapses, ultrastructure, electron microscopy

References

  • 1.Huizinga JD, Thuneberg L, Vanderwinden JM, Rumessen JJ. Interstitial cells of Cajal as targets for pharmacological intervention in gastrointestinal motor disorders. Trends Pharmacol Sci. 1997;18:393–403. doi: 10.1016/s0165-6147(97)01108-5. [DOI] [PubMed] [Google Scholar]
  • 2.Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of Cajal. Arch Histol Cytol. 1999;62:295–316. doi: 10.1679/aohc.62.295. [DOI] [PubMed] [Google Scholar]
  • 3.Rumessen JJ, Vanderwinden JM. Interstitial cells in the musculature of the gastrointestinal tract: Cajal and beyond. Int Rev Cytol. 2003;229:115–208. doi: 10.1016/s0074-7696(03)29004-5. [DOI] [PubMed] [Google Scholar]
  • 4.Faussone-Pellegrini MS. Interstitial cells of Cajal: once negligible players, now blazing protagonists. Ital J Anat Embryol. 2005;110:11–31. [PubMed] [Google Scholar]
  • 5.Faussone-Pellegrini MS. Relationships between neurokinin receptor-expressing interstitial cells of Cajal and tachykininergic nerves in the gut. J Cell Mol Med. 2006;10:20–32. doi: 10.1111/j.1582-4934.2006.tb00288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Cho WJ, Daniel EE. Colocalization between caveolin isoforms in the intestinal smooth muscle and interstitial cells of Cajal of the Cav1(+/+) and Cav1 (-/-) mouse. Histochem Cell Biol. 2006;126:9–16. doi: 10.1007/s00418-005-0128-3. [DOI] [PubMed] [Google Scholar]
  • 7.Hirst GD, Ward SM. Interstitial cells: involvement in rhythmicity and neural control of gut smooth muscle. J Physiol. 2003;550:337–46. doi: 10.1113/jphysiol.2003.043299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Sanders KM, Koh SD, Ward SM. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006;68:307–43. doi: 10.1146/annurev.physiol.68.040504.094718. [DOI] [PubMed] [Google Scholar]
  • 9.Huizinga JD, Faussone-Pellegrini MS. About the presence of interstitial cells of Cajal outside the musculature of the gastrointestinal tract, J Cell Mol Med. 2005;9:468–73. doi: 10.1111/j.1582-4934.2005.tb00372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Popescu LM, Hinescu ME, Ionescu N, Ciontea MS, Cretoiu D, Ardeleanu C. Interstitial cells of Cajal in pancreas. J Cell Mol Med. 2005;9:169–90. doi: 10.1111/j.1582-4934.2005.tb00347.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Harhun MI, Pucovsky V, Povstyan OV, Gordienko DV, Bolton TB. Interstitial cells in the vasculature. J Cell Mol Med. 2005;9:232–43. doi: 10.1111/j.1582-4934.2005.tb00352.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Bobryshev YV. Subset of cells immunopositive for neurokinin-1 receptor identified as arterial interstitial cells of Cajal in human large arteries. Cell Tissue Res. 2005;321:45–55. doi: 10.1007/s00441-004-1061-9. [DOI] [PubMed] [Google Scholar]
  • 13.Hashitani H, Suzuki H. Identification of interstitial cells of Cajal in corporal tissues of the guinea-pig penis. Br J Pharmacol. 2004;141:199–204. doi: 10.1038/sj.bjp.0705622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Ciontea MS, Radu E, Regalia T, Ceafalan L, Cretoiu D, Gherghiceanu M, Braga RI, Malincenco M, Zagrean L, Hinescu ME, Popescu LM. C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. J Cell Mol Med. 2005;9:407–20. doi: 10.1111/j.1582-4934.2005.tb00366.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Popescu LM, Vidulescu C, Curici A, Caravia L, Simionescu AA, Ciontea SM, Simion S. 2006. Imatinib inhibits spontaneous rhythmic contractions of human uterus and intestine Eur J Pharmacol ; doi:10.1016/j.ejphar.2006.06.068. [DOI] [PubMed]
  • 16.Duquette RA, Shmygol A, Vaillant C, Mobasheri A, Pope M, Burdyga T, Wray S. Vimentin-positive, c-kitnegative interstitial cells in human and rat uterus: a role in pacemaking. Biol Reprod. 2005;72:276–83. doi: 10.1095/biolreprod.104.033506. [DOI] [PubMed] [Google Scholar]
  • 17.Popescu LM, Ciontea SM, Cretoiu D, Hinescu ME, Radu E, Ionescu N, Ceausu M, Gherghiceanu M, Braga RI, Vasilescu F, Zagrean L, Ardeleanu C. Novel type of interstitial cell (Cajal-like) in human fallopian tube. J Cell Mol Med. 2005;9:479–523. doi: 10.1111/j.1582-4934.2005.tb00376.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Van der Aa F, Roskams T, Blyweert W, De Ridder D. Interstitial cells in the human prostate: a new therapeutic target. Prostate. 2003;56:250–5. doi: 10.1002/pros.10264. [DOI] [PubMed] [Google Scholar]
  • 19.Davidson RA, McCloskey KD. Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons. J Urol. 2005;173:1385–90. doi: 10.1097/01.ju.0000146272.80848.37. [DOI] [PubMed] [Google Scholar]
  • 20.Brading AF. Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function. J Physiol. 2006;570:13–22. doi: 10.1113/jphysiol.2005.097311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma. Transmission electron microscopy identification. J Cell Mol Med. 2005;9:893–910. doi: 10.1111/j.1582-4934.2005.tb00387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Lang RJ, Klemm MF. Interstitial cells of Cajal-like cells in the upper urinary tract, J Cell Mol Med. 2005;9:543–556. doi: 10.1111/j.1582-4934.2005.tb00487.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Sergeant GP, Thornbury KD, McHale NG, Hollywood MA. Interstitial cells of Cajal in the urethra, J Cell Mol Med. 2006;10:280–291. doi: 10.1111/j.1582-4934.2006.tb00399.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Adler CP, Friedburg H, Herget GW, Neuburger M. Schwalb H. Variability of cardiomyocyte DNA content, ploidy level and nuclear number in mammalian hearts. Virchows Arch. 1996;429:159–64. doi: 10.1007/BF00192438. [DOI] [PubMed] [Google Scholar]
  • 25.Hinescu ME, Popescu LM. Interstitial Cajal-like cells (ICLC) human atrial myocardium. J Cell Mol Med. 2005;9:972–5. doi: 10.1111/j.1582-4934.2005.tb00394.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Hinescu ME, Gherghiceanu M, Mandache E, Ciontea SM, Popescu LM. Interstitial Cajal-like cells (ICLC) in atrial myocardium: ultrastructural and immunohistochemical characterization, J Cell Mol Med. 2006;10:243–257. doi: 10.1111/j.1582-4934.2006.tb00306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Weibel ER. Practical methods for biological morphometry. London: Academic Press; 1979. Stereological methods, [Google Scholar]
  • 28.Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981;29:577–80. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  • 29.Bussolati G, Gugliotta P. Nonspecific staining of mast cells by avidin-biotin-peroxidase complexes (ABC) J Histochem Cytochem. 1983;31:1419–21. doi: 10.1177/31.12.6195216. [DOI] [PubMed] [Google Scholar]
  • 30.Mora R, Bonilha VL, Marmorstein A, Scherer PE, Brown D, Lisanti MP, Rodriguez-Boulan E. Caveolin-2 localizes to the golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1. J Biol Chem. 1999;274:25708–17. doi: 10.1074/jbc.274.36.25708. [DOI] [PubMed] [Google Scholar]
  • 31.Keij JF, Bell-Prince C, Steinkamp JA. Staining of mitochondrial membranes with 10-nonyl acridine orange, MitoFluor Green, and MitoTracker Green is affected by mitochondrial membrane potential altering drugs. Cytometry. 2000;39:203–10. doi: 10.1002/(sici)1097-0320(20000301)39:3<203::aid-cyto5>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  • 32.Vanden Berghe P, Hennig GW, Smith TK. Characteristics of intermittent mitochondrial transport in guinea pig enteric nerve fibers. Am J Physiol Gastrointest Liver Physiol. 2004;286:G671–82. doi: 10.1152/ajpgi.00283.2003. [DOI] [PubMed] [Google Scholar]
  • 33.Goldsmith EC, Hoffman A, Morales MO, Potts JD, Price RL, McFadden A, Rice M, Borg TK. Organization of fibroblasts in the heart. Dev Dyn. 2004;230:787–94. doi: 10.1002/dvdy.20095. [DOI] [PubMed] [Google Scholar]
  • 34.Paranya G, Vineberg S, Dvorin E, Kaushal S, Roth SJ, Rabkin E, Schoen FJ, Bischoff J. Aortic valve endothelial cells undergo transforming growth factorbeta-mediated and non-transforming growth factor-betamediated transdifferentiation. in vitro. Am J Pathol. 2001;159:1335–43. doi: 10.1016/s0002-9440(10)62520-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation. 2004;110:962–8. doi: 10.1161/01.CIR.0000140667.37070.07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Tribulova N, Dupont E, Soukup T, Okruhlicova L, Severs NJ. Sex differences in connexin-43 expression in left ventricles of aging rats. Physiol Res. 2005;54:705–8. [PubMed] [Google Scholar]
  • 37.Kohl P, Camelliti P, Burton FL, Smith GL. Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. J Electrocardiol. 2005;38:45–50. doi: 10.1016/j.jelectrocard.2005.06.096. [DOI] [PubMed] [Google Scholar]
  • 38.Lazarow A, Cooperstein SJ. Studies on the enzymatic basis for the Janus green B staining reaction. J Histochem Cytochem. 1953;1:234–41. doi: 10.1177/1.4.234. [DOI] [PubMed] [Google Scholar]
  • 39.Karnovsky MJ. The localization of cholinesterase activity in rat cardiac muscle by electron microscopy. J Cell Biol. 1964;23:217–32. doi: 10.1083/jcb.23.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Sperelakis N, Rubio R, Redick J. Sharp discontinuity in sarcomere lengths across intercalated disks of fibrillating cat hearts. J Ultrastruct Res. 1970;30:503–32. doi: 10.1016/s0022-5320(70)90050-x. (de verificat referinta) [DOI] [PubMed] [Google Scholar]
  • 41.Rumyantsev PP. Electron microscope study of the myofibril partial disintegration and recovery in the mitotically dividing cardiac muscle cells. Z Zellforsch. 1972;129:471–99. doi: 10.1007/BF00316744. [DOI] [PubMed] [Google Scholar]
  • 42.Tomanek RJ, Karlsson UL. Myocardial ultrastructure of young and senescent rats. J Ultrastruct Res. 1973;42:201–20. doi: 10.1016/s0022-5320(73)90050-6. [DOI] [PubMed] [Google Scholar]
  • 43.Arluk DJ, Rhodin JA. The ultrastructure of calf heart conducting fibers with special reference to nexuses and their distribution. J Ultrastruct Res. 1974;49:11–23. doi: 10.1016/s0022-5320(74)90074-4. [DOI] [PubMed] [Google Scholar]
  • 44.Maron BJ, Ferrans VJ, Roberts WC. Myocardial ultrastructure in patients with chronic aortic valve disease. Am J Cardiol. 1975;35:725–39. doi: 10.1016/0002-9149(75)90065-x. [DOI] [PubMed] [Google Scholar]
  • 45.Smith HE, Page E. Morphometry of rat heart mitochondrial subcompartments and mebranes: application to myocardial cell atrophy after hypophysectomy. J Ultrastruct Res. 1976;55:31–41. doi: 10.1016/s0022-5320(76)80079-2. [DOI] [PubMed] [Google Scholar]
  • 46.Jones M, Ferrans VJ. Myocardial degeneration in congenital heart disease. Comparison of morphologic findings in young and old patients with congenital heart disease associated with muscular obstruction to right ventricular outflow. Am J Cardiol. 1977;39:1051–63. doi: 10.1016/s0002-9149(77)80221-x. [DOI] [PubMed] [Google Scholar]
  • 47.Schaper W, Schaper J. The coronary microcirculation. Am J Cardiol. 1977;40:1008–12. doi: 10.1016/0002-9149(77)90053-4. [DOI] [PubMed] [Google Scholar]
  • 48.Spotnitz WD, Spotnitz HM, Truccone NJ, Cotrell TS, Gersony W, Malm JR, Sonnenblick EH. Relation of ultrastructure and function. Circ Res. 1979;44:679–91. doi: 10.1161/01.res.44.5.679. [DOI] [PubMed] [Google Scholar]
  • 49.Frank JS, Rich TL, Beydler S, Kreman M. Calcium depletion in rabbit myocardium. Ultrastructure of the sarcolemma and correlation with the calcium paradox. Circ Res. 1982;51:117–30. doi: 10.1161/01.res.51.2.117. [DOI] [PubMed] [Google Scholar]
  • 50.Hayashi T, Okamoto F, Terasaki F, Deguchi H, Hirota Y, Kitaura Y, Spry CJF, Kawamura K. Ultrastructural and immunohistochemical studies on myocardial biopsies from a patient with eosinophilic endomyocarditis. Cardiovasc Pathol. 1996;5:105–112. doi: 10.1016/1054-8807(95)00064-x. [DOI] [PubMed] [Google Scholar]
  • 51.Thornell L, Carlsson L, Li Z, Mericskay M, Paulin D. Null mutation in the desmin gene gives rise to a cardiomyopathy. J Mol Cell Cardiol. 1997;29:2107–24. doi: 10.1006/jmcc.1997.0446. [DOI] [PubMed] [Google Scholar]
  • 52.Schwarz ER, Schoendube FA, Kostin S, Schmiedtke N, Schulz G, Buell U, Messmer BJ, Morrison J, Hanrath P, vom Dahl J. Prolonged myocardial hibernation exacerbates cardiomyocyte degeneration and impairs recovery of function after revascularization. J Am Coll Cardiol. 1998;31:1018–26. doi: 10.1016/s0735-1097(98)00041-2. [DOI] [PubMed] [Google Scholar]
  • 53.Becker LC, Jeremy RW, Schaper J, Schaper W. Ultrastructural assessment of myocardial necrosis occurring during ischemia and 3-h reperfusion in the dog. Am J Physiol. 1999;277:H243–52. doi: 10.1152/ajpheart.1999.277.1.H243. [DOI] [PubMed] [Google Scholar]
  • 54.Hegstad AC, Ytrehus K, Lindal S, Jorgensen L. Ultrastructural alterations during the critical phase of reperfusion: a stereological study in buffer-perfused isolated rat hearts. Cardiovasc Pathol. 1999;8:279–89. doi: 10.1016/s1054-8807(99)00011-3. [DOI] [PubMed] [Google Scholar]
  • 55.Chen C, Liu J, Hua D, Ma L, Lai T, Fallon JT, Knibbs D, Gillam L, Mangion J, Knight DR, Waters D. Impact of delayed reperfusion of myocardial hibernation on myocardial ultrastructure and function and their recoveries after reperfusion in a pig model of myocardial hibernation. Cardiovasc Pathol. 2000;9:67–84. doi: 10.1016/s1054-8807(00)00029-6. [DOI] [PubMed] [Google Scholar]
  • 56.Hayashi T, Sohmiya K, Ukimura A, Endoh S, Mori T, Shimomura H, Okabe M, Terasaki F, Kitaura Y. Angiotensin II receptor blockade prevents microangiopathy and preserves diastolic function in the diabetic rat heart. Heart. 2003;89:1236–42. doi: 10.1136/heart.89.10.1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Milei J, Fraga CG, Grana DR, Ferreira R, Ambrosio G. Ultrastructural evidence of increased tolerance of hibernating myocardium to cardioplegic ischemia-reperfusion injury. J Am Coll Cardiol. 2004;43:2329–36. doi: 10.1016/j.jacc.2004.01.049. [DOI] [PubMed] [Google Scholar]
  • 58.Wang GY, Bergman MR, Nguyen AP, Turcato S, Swigart PM, Rodrigo MC, Simpson PC, Karliner JS, Lovett DH, Baker AJ. Cardiac transgenic matrix metalloproteinase-2 expression directly induces impaired contractility. Cardiovasc Res. 2006;15(69):688–96. doi: 10.1016/j.cardiores.2005.08.023. [DOI] [PubMed] [Google Scholar]
  • 59.Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005;65:40–51. doi: 10.1016/j.cardiores.2004.08.020. [DOI] [PubMed] [Google Scholar]
  • 60.Eyden B. The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultrastructure. Part 1—normal and reactive cells. J Submicrosc Cytol Pathol. 2005;37:109–204. [PubMed] [Google Scholar]
  • 61.Eyden B. The myofibroblast: an assessment of controversial issues and a definition useful in diagnosis and research. Ultrastruct Pathol. 2001;25:39–50. doi: 10.1080/019131201300004672. [DOI] [PubMed] [Google Scholar]
  • 62.Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 2001;104:2525–32. doi: 10.1161/hc4601.099489. [DOI] [PubMed] [Google Scholar]
  • 63.Miragoli M, Gaudesius G, Rohr S. Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circ Res. 2006;98:801–10. doi: 10.1161/01.RES.0000214537.44195.a3. [DOI] [PubMed] [Google Scholar]
  • 64.Popescu LM, Gherghiceanu M, Cretoiu D, Radu E. The connective connection: interstitial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. Electron microscope study in situ. J Cell Mol Med. 2005;9:714–30. doi: 10.1111/j.1582-4934.2005.tb00502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES