Abstract
Because the left ventricular (LV) hypertrophy due to volume overload induced by arteriovenous (AV) shunt was associated with an increase in phospholipase C (PLC) isozyme mRNA levels, PLC is considered to be involved in the development of cardiac hypertrophy. Since the renin-angiotensin system (RAS) is activated in cardiac hypertrophy, the role of RAS in the stimulation of PLC isozyme gene expression in hypertrophied heart was investigated by inducing AV shunt in Sprague-Dawley rats. The animals were treated with or without losartan (20 mg/kg, daily) for 3 days as well as 1, 2 and 4 weeks, and atria, right ventricle (RV) and LV were used for analysis. The increased muscle mass as well as the mRNA levels for PLC β1 and β3 in atria and RV, unlike PLC β3 gene expression in LV, at 3 days of AV shunt were attenuated by losartan. The increased gene expression for PLC β1 at 2 weeks in atria, at 1 and 4 weeks in RV, and at 2 and 4 weeks in LV was also depressed by losartan treatment. Likewise, the elevated mRNA levels for PLC β3 in RV at 1 week and in LV at 4 weeks of cardiac hypertrophy were decreased by losartan. On the other hand, the increased levels of mRNA for PLC γ1 in RV and LV at 2 and 4 weeks of inducing hypertrophy, unlike in atria at 4 weeks were not attenuated by losartan treatment. While the increased mRNA level for PLC δ1 in LV was reduced by losartan, gene expression for PLC δ1 was unaltered in atria and decreased in RV at 3 days of inducing AV shunt. These results suggest that changes in PLC isozyme gene expression were chamber specific and time-dependent upon inducing cardiac hypertrophy due to AV shunt. Furthermore, partial attenuation of the increased gene expression for some of the PLC isozymes and no effect of losartan on others indicate that both RAS dependent and independent mechanisms may be involved in hypertrophied hearts due to volume overload.
Keywords: volume overload, cardiac hypertrophy, phospholipase C, gene expression, angiotensin II type 1 receptor antagonist
References
- 1.D'Santos CS, Clarke JH, Divecha N. Phospholipid signaling in the nucleus. Biochim Biophys Acta. 1998;1436:201–32. doi: 10.1016/s0005-2760(98)00146-5. [DOI] [PubMed] [Google Scholar]
- 2.James SR, Downes CP. Structural and mechanistic features of phospholipases C: effectors of inositol phospholipid-mediated signal transduction. Cell Signal. 1997;9:329–36. doi: 10.1016/s0898-6568(96)00175-1. [DOI] [PubMed] [Google Scholar]
- 3.Katan M. Families of phosphoinositide-specific phospholipase C: structure and function. Biochim Biophys Acta. 1998;1436:5–17. doi: 10.1016/s0005-2760(98)00125-8. [DOI] [PubMed] [Google Scholar]
- 4.Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem. 2001;70:281–312. doi: 10.1146/annurev.biochem.70.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Gilbert JC, Shirayama T, Pappano AJ. Inositol trisphosphate promotes Na-Ca exchange current by releasing calcium from sarcoplasmic reticulum in cardiac myocytes. Circ Res. 1991;69:1632–9. doi: 10.1161/01.res.69.6.1632. [DOI] [PubMed] [Google Scholar]
- 6.Huisamen B, Mouton R, Opie LH, Lochner A. Demonstration of a specific [3H] Ins (1,4,5) P3 binding site in rat heart sarcoplasmic reticulum. J Mol Cell Cardiol. 1994;26:341–349. doi: 10.1006/jmcc.1994.1043. [DOI] [PubMed] [Google Scholar]
- 7.Kijimi Y, Fleischer S. Two types of inositol trisphosphate binding in cardiac microsomes. Biochem Biophys Res Commun. 1992;189:728–35. doi: 10.1016/0006-291x(92)92262-v. [DOI] [PubMed] [Google Scholar]
- 8.Kijimi Y, Saito A, Jetton TL, Magnuson MA, Fleischer S. Different intracellular localization of inositol 1,4,5-trisphosphate and ryanodine receptors in cardiomyocytes. J Biol Chem. 1993;268:3499–506. [PubMed] [Google Scholar]
- 9.Puceat M, Vassort G. Signaling by protein kinase C isoforms in the heart. Mol Cell Biochem. 1996;157:65–72. doi: 10.1007/BF00227882. [DOI] [PubMed] [Google Scholar]
- 10.Quist EE, Foresman BH, Vasan R, Quist CW. Inositol tetrakisphosphate stimulates a novel ATP-independent Ca2+ uptake mechanism in cardiac junctional sarcoplasmic reticulum. Biochem Biophys Res Commun. 1994;204:69–75. doi: 10.1006/bbrc.1994.2427. [DOI] [PubMed] [Google Scholar]
- 11.Sakata Y. Tissue factors contributing to cardiac hypertrophy in cardiomyopathic hamsters (BIO14.6): involvement of transforming growth factor-β1 and tissue reninangiotensin system in the progression of cardiac hypertrophy [in Japanese] Hokkaido Igaku Zasshi. 1993;68:18–28. [PubMed] [Google Scholar]
- 12.Kawaguchi H, Sano H, Iizuka K, Okada H, Kudo T, Kageyama K, Muramoto, Murakami T, Okamoto H, Mochizuki N. Phosphatidylinositol metabolism in hypertrophic rat heart. Circ Res. 1993;72:966–72. doi: 10.1161/01.res.72.5.966. [DOI] [PubMed] [Google Scholar]
- 13.Shoki M, Kawaguchi H, Okamoto H, Sano H, Sawa H, Kudo T, Hirao N, Sakata Y, Yasuda H. Phosphatidylinositol and inositolphosphatide metabolism in hypertrophied rat heart. Jpn Circ J. 1992;56:142–7. doi: 10.1253/jcj.56.142. [DOI] [PubMed] [Google Scholar]
- 14.Lamers JM, Eskildsen-Helmond YE, Resink AM, de Jonge HW, Bezstarosti K, Sharma HS, van Heugten HA. Endothelin-1-induced phospholipase C β- and D and protein kinase C isoenzyme signaling leading to hypertrophy in rat cardiomyocytes. J Cardiovasc Pharmacol. 1995;26:S100–3. [PubMed] [Google Scholar]
- 15.Schnabel P, Mies F, Nohr T, Geisler M, Bohm M. Differential regulation of phospholipase C-β isozymes in cardiomyocyte hypertrophy. Biochem Biophys Res Commun. 2000;275:1–6. doi: 10.1006/bbrc.2000.3255. [DOI] [PubMed] [Google Scholar]
- 16.Singal T, Dhalla NS, Tappia PS. Phospholipase C may be involved in norepinephrine-induced cardiac hypertrophy. Biochem Biophys Res Commun. 2004;320:1015–9. doi: 10.1016/j.bbrc.2004.06.052. [DOI] [PubMed] [Google Scholar]
- 17.Dent MR, Dhalla NS, Tappia PS. Phospholipase C gene expression, protein content, and activities in cardiac hypertrophy and heart failure due to volume overload. Am J Physiol Heart Circ Physiol. 2004;287:H719–27. doi: 10.1152/ajpheart.01107.2003. [DOI] [PubMed] [Google Scholar]
- 18.Sentex E, Wang X, Liu X, Lukas A, Dhalla NS. Expression of protein kinase C isoforms in cardiac hypertrophy and heart failure due to volume overload. Can J Physiol Pharmacol. 2006;84:227–38. doi: 10.1139/y05-120. [DOI] [PubMed] [Google Scholar]
- 19.Sethi R, Saini HK, Wang X, Elimban V, Babick A, Dhalla NS. 2006. Differential changes in β-adrenoceptor signal transduction in left and right ventricles of infarcted rats Can J Physiol Pharmacol ; in press. [DOI] [PubMed]
- 20.Wang X, Sentex E, Saini HK, Chapman D, Dhalla NS. Upregulation of β-adrenergic receptors in heart failure due to volume overload. Am J Physiol Heart Circ Physiol. 2005;289:H151–9. doi: 10.1152/ajpheart.00066.2005. [DOI] [PubMed] [Google Scholar]
- 21.Wang X, Sentex E, Chapman D, Dhalla NS. Alterations of adenylyl cyclase and G proteins in aortocaval shunt-induced heart failure. Am J Physiol Heart Circ Physiol. 2004;287:H118–25. doi: 10.1152/ajpheart.00798.2003. [DOI] [PubMed] [Google Scholar]
- 22.Wang X, Ren B, Liu SY, Sentex E, Tappia PS, Dhalla NS. Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat. J Appl Physiol. 2003;94:752–63. doi: 10.1152/japplphysiol.00248.2002. [DOI] [PubMed] [Google Scholar]
- 23.Kannel WB. Epidemiology and prevention of cardiac failure: Framingham Study insights. Eur Heart J. 1987;8:23–6. doi: 10.1093/eurheartj/8.suppl_f.23. [DOI] [PubMed] [Google Scholar]
- 24.Cantor EJ, Babick AP, Vasanji Z, Dhalla NS, Netticadan T. A comparative serial echocardiographic analysis of cardiac structure and function in rats subjected to pressure or volume overload. J Mol Cell Cardiol. 2005;38:777–86. doi: 10.1016/j.yjmcc.2005.02.012. [DOI] [PubMed] [Google Scholar]
- 25.Rudolph W. Pathophysiologic and diagnostic aspects of heart failure. Herz. 1990;15:147–57. [PubMed] [Google Scholar]
- 26.Sabri A, Steinberg SF. Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heart failure. Mol Cell Biochem. 2003;251:97–101. [PubMed] [Google Scholar]
- 27.Yamakawa H, Imamura T, Matsuo T, Onitsuka H, Tsumori Y, Kato J, Kitamura K, Koiwaya Y, Eto T. Diastolic wall stress and ANG II in cardiac hypertrophy and gene expression induced by volume overload. Am J Physiol. 2000;279:H2939–46. doi: 10.1152/ajpheart.2000.279.6.H2939. [DOI] [PubMed] [Google Scholar]
- 28.Kim S, Sada T, Mizuno M, Ikeda M, Yano M, Miura K, Yamanaka S, Koike H, Iwao H. Effects of angiotensin AT1 receptor antagonist on volume overload-induced cardiac gene expression in rats. Hypertens Res. 1997;20:133–42. doi: 10.1291/hypres.20.133. [DOI] [PubMed] [Google Scholar]
- 29.Ishiye M, Umemura K, Uematsu T, Nakashima M. Angiotensin AT1 receptor-mediated attenuation of cardiac hypertrophy due to volume overload: involvement of endothelin. Eur J Pharmacol. 1995;280:11–7. doi: 10.1016/0014-2999(95)00167-j. [DOI] [PubMed] [Google Scholar]
- 30.Ruzicka M, Yuan B, Leenen FH. Effects of enalapril versus losartan on regression of volume overload-induced cardiac hypertrophy in rats. Circulation. 1994;90:484–91. doi: 10.1161/01.cir.90.1.484. [DOI] [PubMed] [Google Scholar]
- 31.Ishiye M, Umemura K, Uematsu T, Nakashima M. Effects of losartan, an angiotensin II antagonist, on the development of cardiac hypertrophy due to volume overload. Biol Pharm Bull. 1995;18:700–4. doi: 10.1248/bpb.18.700. [DOI] [PubMed] [Google Scholar]
- 32.Ruzicka M, Yuan B, Harmsen E, Leenen FH. The reninangiotensin system and volume overload-induced cardiac hypertrophy in rats. Effects of angiotensin converting enzyme inhibitor versus angiotensin II receptor blocker. Circulation. 1993;87:921–30. doi: 10.1161/01.cir.87.3.921. [DOI] [PubMed] [Google Scholar]
- 33.Wang X, Dhalla NS. Modification of β-adrenoceptor signal transduction pathway by genetic manipulation and heart failure. Mol Cell Biochem. 2000;214:131–55. doi: 10.1023/a:1007131925048. [DOI] [PubMed] [Google Scholar]
- 34.Shao Q, Ren B, Elimban V, Tappia PS, Dhalla NS. Modification of sarcolemmal Na+-K+-ATPase and Na+/Ca2+ exchanger expression in heart failure by blockade of renin-angiotensin system. Am J Physiol. 2005;288:H2637–46. doi: 10.1152/ajpheart.01304.2004. [DOI] [PubMed] [Google Scholar]
- 35.Modesti PA, Vanni S, Bertolozzi I, Cecioni I, Polidori G, Paniccia R, Bandinelli B, Perna A, Liguori P, Boddi M, Galanti G, Serneri GG. Early sequence of cardiac adaptations and growth factor formation in pressure-and volume-overload hypertrophy. Am J Physiol Heart Circ Physiol. 2000;279:H976–85. doi: 10.1152/ajpheart.2000.279.3.H976. [DOI] [PubMed] [Google Scholar]
- 36.Volterranni M, Giustina A, Manelli F, Cicoira MA, Lorusso R, Giordano A. Role of growth hormone in chronic heart failure: therapeutic implications. Ital Heart J. 2000;1:732–8. [PubMed] [Google Scholar]
- 37.Eskildren-Helmond YEG, Bezstarosti K, Dekkers DHW, van Heugten HAA, Lamers JMJ. Cross-talk between receptor-mediated phospholipase C-β and D via protein kinase C as intracellular signal possibly leading to hypertrophy in serum-free cultured cardiomyocytes. J Mol Cell Cardiol. 1997;29:2545–59. doi: 10.1006/jmcc.1997.0491. [DOI] [PubMed] [Google Scholar]
- 38.Goutsouliak V, Rabkin SW. Angiotensin II-induced inositol phosphate generation is mediated through tyrosine kinase pathways in cardiomyocytes. Cell Signal. 1997;9:505–12. doi: 10.1016/s0898-6568(97)00008-9. [DOI] [PubMed] [Google Scholar]
- 39.Van Bilsen M. Signal transduction revisited: recent developments in angiotensin II signaling in the cardiovascular system. Cardiovasc Res. 1997;36:310–22. doi: 10.1016/s0008-6363(97)00239-3. [DOI] [PubMed] [Google Scholar]
- 40.Singal T, Dhalla NS, Tappia PS. Phospholipase C mRNA expression is regulated by a protein kinase C and ERK 1/2-dependent pathway in adult rat cardiomyocytes (Abstract) J Mol Cell Cardiol. 2005;38:A112. [Google Scholar]