Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;10(2):493–498. doi: 10.1111/j.1582-4934.2006.tb00414.x

Methylene blue inhibits angiogenesis in chick chorioallontic membrane through a nitric oxide-independent mechanism

N Zacharakis a, P Tone b, CS Flordellis a, ME Maragoudakis a, NE Tsopanoglou a,*
PMCID: PMC3933136  PMID: 16796814

Abstract

Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study was to evaluate the effect of methylene blue in chick chorioallantoic membrane angiogenesis model in vivo. In this well characterized model, methylene blue inhibited angiogenesis in a concentration-dependent manner. In addition, when methylene blue was combined with sodium nitroprusside, a spontaneous generator of nitric oxide, an inhibition of angiogenesis was evident which was comparable with that observed by the application of methylene blue alone. Sodium nitroprusside, alone, caused a significant inhibition in basal angiogenesis. These results provide evidence that methylene blue inhibits angiogenesis independently of nitric oxide pathway and suggest that methylene blue may be useful for treating angiogenesis-dependent human diseases.

Keywords: methylene blue, angiogenesis, chick chorioallantoic membrane, nitric oxide, guanylyl cyclase

References

  • 1.Milkiewicz M, Ispanovic E, Doyle JL, Hass TL. Regulators of angiogenesis and strategies for their therapeutic manipulation. Int J Biochem Cell Biol. 2006;38:333–57. doi: 10.1016/j.biocel.2005.10.006. [DOI] [PubMed] [Google Scholar]
  • 2.McDonald LJ, Murad F. Nitric oxide and cyclic GMP signaling. Proc Soc Exp Biol Med. 1996;211:1–6. doi: 10.3181/00379727-211-43950a. [DOI] [PubMed] [Google Scholar]
  • 3.Ziche M. Nitric oxide and angiogenesis. In: Maragoudakis ME, editor. Angiogenesis models, modulators and clinical applications. Vol. 298. New YorkandLondon: Plenum Press; 1998. pp. 297–306. [Google Scholar]
  • 4.Pipili-Synetos E. Nitric oxide: A promoter or inhibitor of angiogenesis. In: Maragoudakis ME, editor. Angiogenesis models, modulators and clinical applications. Vol. 298. New YorkandLondon: Plenum Press; 1998. pp. 307–319. [Google Scholar]
  • 5.Mayer B, Brunner F, Schmidt K. Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol. 1993;45:367–74. doi: 10.1016/0006-2952(93)90072-5. [DOI] [PubMed] [Google Scholar]
  • 6.Gruetter CA, Kadowitz PJ, Ignarro LJ. Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrate and amyl nitrite. Can J Physiol Pharmacol. 1981;59:150–6. doi: 10.1139/y81-025. [DOI] [PubMed] [Google Scholar]
  • 7.Mayer B, Brunner F, Schmidt K. Novel actions of methylene blue. Eur Heart J. 1993;14:22–6. [PubMed] [Google Scholar]
  • 8.Tsopanoglou NE, Pipili-Synetos E, Maragoudakis ME. Thrombin promotes angiogenesis by a mechanism independent of fibrin formation. Am J Physiol. 1993;264:C1302–7. doi: 10.1152/ajpcell.1993.264.5.C1302. [DOI] [PubMed] [Google Scholar]
  • 9.Maragoudakis ME, Haralabopoulos G, Tsopanoglou NE, Pipili-Synetos E. Validation of collagenous protein synthesis as an index for angiogenesis with the use of morphological methods. Microvasc Res. 1995;50:215–22. doi: 10.1006/mvre.1995.1054. [DOI] [PubMed] [Google Scholar]
  • 10.Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, Gruetter CA. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther. 1981;218:739–49. [PubMed] [Google Scholar]
  • 11.Pipili-Synetos E, Sakkoula E, Maragoudakis ME. Nitric oxide is involved in the regulation of angiogenesis. Br J Pharmacol. 1993;108:855–7. doi: 10.1111/j.1476-5381.1993.tb13476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Pipili-Synetos E, Sakkoula E, Haralabopoulos G, Andriopoulou P, Peristeris P, Maragoudakis ME. Evidence that nitric oxide is an endogenous antiangiogenic mediator. Br J Pharmacol. 1994;111:894–902. doi: 10.1111/j.1476-5381.1994.tb14822.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Chiang SC, Cheng CH, Moulton KS, Kasznica JM, Moulton SL. TNP-470 inhibits intraabdominal adhesion formation. J Pediatr Surg. 2000;35:189–96. doi: 10.1016/s0022-3468(00)90008-3. [DOI] [PubMed] [Google Scholar]
  • 14.Kluger Y, Weinbroum A, Ben-Avraham R, Galili Y, Klausner J, Radau M. Reduction in formation of peritoneal adhesions by methylene blue in rats: a dose response study. Eur J Surg. 2000;166:568–71. doi: 10.1080/110241500750008655. [DOI] [PubMed] [Google Scholar]
  • 15.Faber P, Ronald A, Millar BW. Methylthioninium chloride: pharmacology and clinical applications with special emphasis on nitric oxide mediated vasodilatory shock during cardiopulmonary bypass. Anaesthesia. 2005;60:575–87. doi: 10.1111/j.1365-2044.2005.04185.x. [DOI] [PubMed] [Google Scholar]
  • 16.Radomski MW, Palmer RMJ, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA. 1990;87:5193–7. doi: 10.1073/pnas.87.13.5193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Deininger MH, Wybranietz WA, Graepler FTC, Lauer UM, Meyermann R, Schluesener HJ. Endothelial endostatin release is induced by general cell stress and modulated by the nitric oxide/cGMP pathway. FASEB J. 2003;17:1267–76. doi: 10.1096/fj.02-1118com. [DOI] [PubMed] [Google Scholar]
  • 18.Pan S-L, Guh J-H, Peng C-Y, Wang S-W, Chang Y-L, Cheng F-C, Chang J-H, Kuo S-C, Lee F-Y, Teng C-M. YC-1 [3-(5'-Hydroxymethyl-2;-furyl0-1-benzyl indazole] inhibits endothelial cell functions induced by angiogenic factors in vitro and angiogenesis in vivo. J Pharmacol Exp Ther. 2005;314:35–42. doi: 10.1124/jpet.105.085126. [DOI] [PubMed] [Google Scholar]
  • 19.Duenas ET, Keck R, De Vos A, Jones AJ, Cleland JL. Comparison between light induced and chemically induced oxidation of rhVEGF. Pharm Res. 2001;18:1455–60. doi: 10.1023/a:1012261024249. [DOI] [PubMed] [Google Scholar]
  • 20.Lewis C, Scouten WH. Photooxidation of methionine with immobilized methylene blue as photooxidizer. Biochim Piophys Acta. 1976;444:326–30. doi: 10.1016/0304-4165(76)90250-6. [DOI] [PubMed] [Google Scholar]
  • 21.Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest. 2001;108:349–55. doi: 10.1172/JCI13738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci. 2001;114:853–65. doi: 10.1242/jcs.114.5.853. [DOI] [PubMed] [Google Scholar]
  • 23.Presta M, Leali D, Stabile H, Ronca R, Carmozzi L, Coco E, Moroni E, Liekens S, Rusnati M. Heparin derivatives as angiogenesis inhibitors. Curr Pharmac Design. 2003;9:553–66. doi: 10.2174/1381612033391379. [DOI] [PubMed] [Google Scholar]
  • 24.Farndale RW, Sayers CA, Barrett AJ. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res. 1982;9:247–8. doi: 10.3109/03008208209160269. [DOI] [PubMed] [Google Scholar]
  • 25.Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylene blue. Biochim Biophys Acta. 1986;883:173–7. doi: 10.1016/0304-4165(86)90306-5. [DOI] [PubMed] [Google Scholar]
  • 26.Clifton IIJ, Leikin JB. Methylene blue. Am J Ther. 2003;10:289–91. doi: 10.1097/00045391-200307000-00009. [DOI] [PubMed] [Google Scholar]
  • 27.Daemen-Gubbels CR, Groeneveld PH, Groeneveld AB. Methylene blue increases myocardial function in septic shock. Crit Care Med. 1995;23:1363–70. doi: 10.1097/00003246-199508000-00009. [DOI] [PubMed] [Google Scholar]
  • 28.Evora PR, Roselino CH, Schiaveto PM. Methylene blue in anaphylactic shock. Ann Emerg Med. 1997;30:240. doi: 10.1016/s0196-0644(97)70152-5. [DOI] [PubMed] [Google Scholar]
  • 29.Wright RO, Lewander WJ, Woolf AD. Methemoglobinemia: etiology, pharmacology and clinical management. Ann Emerg Med. 1999;34:646–56. doi: 10.1016/s0196-0644(99)70167-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES