Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jan;80(1):85–89. doi: 10.1073/pnas.80.1.85

Chromatographic resolution and kinetic characterization of glucokinase from islets of Langerhans.

M D Meglasson, P T Burch, D K Berner, H Najafi, A P Vogin, F M Matschinsky
PMCID: PMC393314  PMID: 6337376

Abstract

Glucokinase (ATP:D-glucose 6-phosphotransferase, EC 2.7.1.2) from rat islets of Langerhans was partially purified by chromatography on DEAE-Cibacron blue F3GA agarose. The enzyme eluted in two separate peaks. Sigmoidal rate dependence was found with respect to glucose (Hill coefficient = 1.5) for both enzyme fractions. Km values for glucose were 5.7 mM for the major fraction and 4.5 mM for the minor fraction. Neither fraction phosphorylated GlcNAc. A GlcNAc kinase (ATP:2-acetamido-2-deoxy-D-glucose 6-phosphotransferase, EC 2.7.1.59)-enriched fraction, prepared by affinity chromatography on Sepharose-N-(6-aminohexanoyl)-GlcNAc, had a Km of 25 microM for GlcNAc. Islet tissue also contained hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) eluting in multiple peaks. The results are consistent with the concept that glucokinase serves as the glucose sensor of pancreatic beta cells.

Full text

PDF
85

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen M. B., Brockelbank J. L., Walker D. G. Apparent 'glucokinase' activity in non-hepatic tissues due to N-acetyl-D-glucosamine kinase. Biochim Biophys Acta. 1980 Aug 7;614(2):357–366. doi: 10.1016/0005-2744(80)90225-9. [DOI] [PubMed] [Google Scholar]
  2. Allen M. B., Walker D. G. Kinetic characterization of N-acetyl-D-glucosamine kinase from rat liver and kidney. Biochem J. 1980 Mar 1;185(3):577–582. doi: 10.1042/bj1850577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen M. B., Walker D. G. The isolation and preliminary characterization of N-acetyl-D-glucosamine kinase from rat kidney and liver. Biochem J. 1980 Mar 1;185(3):565–575. doi: 10.1042/bj1850565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ashcroft S. J., Hedeskov C. J., Randle P. J. Glucose metabolism in mouse pancreatic islets. Biochem J. 1970 Jun;118(1):143–154. doi: 10.1042/bj1180143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ashcroft S. J., Randle P. J. Enzymes of glucose metabolism in normal mouse pancreatic islets. Biochem J. 1970 Aug;119(1):5–15. doi: 10.1042/bj1190005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burch P. T., Trus M. D., Berner D. K., Leontire A., Zawalich K. C., Matschinsky F. M. Adaptation of glycolytic enzymes: glucose use and insulin release in rat pancreatic islets during fasting and refeeding. Diabetes. 1981 Nov;30(11):923–928. doi: 10.2337/diab.30.11.923. [DOI] [PubMed] [Google Scholar]
  7. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  8. Cornish-Bowden A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J. 1974 Jan;137(1):143–144. doi: 10.1042/bj1370143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davagnino J., Ureta T. The identification of extrahepatic "glucokinase" as N-acetylglucosamine kinase. J Biol Chem. 1980 Apr 10;255(7):2633–2636. [PubMed] [Google Scholar]
  10. Dean P. D., Watson D. H. Protein purification using immobilised triazine dyes. J Chromatogr. 1979 Oct 1;165(3):301–319. doi: 10.1016/s0021-9673(00)88187-x. [DOI] [PubMed] [Google Scholar]
  11. Holroyde M. J., Chesher J. M., Trayer I. P., Walker D. G. Studies on the use of sepharose-N-(6-aminohexanoyl)-2-amino-2-deoxy-D-glucopyranose for the large-scale purification of hepatic glucokinase. Biochem J. 1976 Feb 1;153(2):351–361. doi: 10.1042/bj1530351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hughes P., Lowe C. R., Sherwood R. F. Metal ion-promoted binding of proteins to immobilized triazine dye affinity adsorbents. Biochim Biophys Acta. 1982 Jan 4;700(1):90–100. doi: 10.1016/0167-4838(82)90296-5. [DOI] [PubMed] [Google Scholar]
  13. KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
  14. Matschinsky F. M., Ellerman J. E. Metabolism of glucose in the islets of Langerhans. J Biol Chem. 1968 May 25;243(10):2730–2736. [PubMed] [Google Scholar]
  15. Pilkis S. J., Hansen R. J. Resolution of two high-Km ATP:D-hexose 6-phosphotransferase bands by starch-gel electrophoresis. Biochim Biophys Acta. 1968 Apr 24;159(1):189–191. doi: 10.1016/0005-2744(68)90260-x. [DOI] [PubMed] [Google Scholar]
  16. Rijksen G., Staal G. E. Purification and some properties of human erythrocyte hexokinase. Biochim Biophys Acta. 1976 Sep 14;445(2):330–341. doi: 10.1016/0005-2744(76)90087-5. [DOI] [PubMed] [Google Scholar]
  17. Scharp D. W., Kemp C. B., Knight M. J., Ballinger W. F., Lacy P. E. The use of ficoll in the preparation of viable islets of langerhans from the rat pancreas. Transplantation. 1973 Dec;16(6):686–689. doi: 10.1097/00007890-197312000-00028. [DOI] [PubMed] [Google Scholar]
  18. Shatton J. B., Morris H. P., Weinhouse S. Kinetic, electrophoretic, and chromatographic studies on glucose-ATP phosphotransferases in rat hepatomas. Cancer Res. 1969 Jun;29(6):1161–1172. [PubMed] [Google Scholar]
  19. Storer A. C., Cornish-Bowden A. Kinetic evidence for a 'mnemonical' mechanism for rat liver glucokinase. Biochem J. 1977 Jul 1;165(1):61–69. doi: 10.1042/bj1650061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Storer A. C., Cornish-Bowden A. Kinetics of rat liver glucokinase. Co-operative interactions with glucose at physiologically significant concentrations. Biochem J. 1976 Oct 1;159(1):7–14. doi: 10.1042/bj1590007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Trus M. D., Zawalich W. S., Burch P. T., Berner D. K., Weill V. A., Matschinsky F. M. Regulation of glucose metabolism in pancreatic islets. Diabetes. 1981 Nov;30(11):911–922. doi: 10.2337/diab.30.11.911. [DOI] [PubMed] [Google Scholar]
  22. Täljedal I. B. On insulin secretion. Diabetologia. 1981 Jul;21(1):1–17. doi: 10.1007/BF03216216. [DOI] [PubMed] [Google Scholar]
  23. Weinhouse S. Regulation of glucokinase in liver. Curr Top Cell Regul. 1976;11:1–50. [PubMed] [Google Scholar]
  24. Zawalich W. S., Matschinsky F. M. Sequential analysis of the releasing and fuel function of glucose in isolated perifused pancreatic islets. Endocrinology. 1977 Jan;100(1):1–8. doi: 10.1210/endo-100-1-1. [DOI] [PubMed] [Google Scholar]
  25. Zawalich W. S., Pagliara A. S., Matschinsky F. M. Effects of iodoacetate, mannoheptulose and 3-O-methyl glucose on the secretory function and metabolism of isolated pancreatic islets. Endocrinology. 1977 May;100(5):1276–1283. doi: 10.1210/endo-100-5-1276. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES