Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;10(3):588–612. doi: 10.1111/j.1582-4934.2006.tb00423.x

In vivo models of angiogenesis

K Norrby 1,*
PMCID: PMC3933145  PMID: 16989723

Abstract

The process of building new blood vessels (angiogenesis) and controlling the propagation of blood vessels (anti-angiogenesis) are fundamental to human health, as they play key roles in wound healing and tissue growth. More than 500 million people may stand to benefit from anti- or pro-angiogenic treatments in the coming decades [National Cancer Institute (USA), Cancer Bulltetin, volume 3, no. 9, 2006]. The use of animal models to assay angiogenesis is crucial to the search for therapeutic agents that inhibit angiogenesis in the clinical setting. Examples of persons that would benefit from these therapies are cancer patients, as cancer growth and spread is angiogenesis-dependent, and patients with aberrant angiogenesis in the eye, which may lead to blindness or defective sight. Recently, anti-angiogenesis therapies have been introduced successfully in the clinic, representing a turning point in tumor therapy and the treatment of macular degeneration and heralding a new era for the treatment of several commonly occurring angiogenesis-related diseases. On the other hand, pro-angiogenic therapies that promote compensatory angiogenesis in hypoxic tissues, such as those subjected to ischemia in myocardial or cerebral hypoxia due to occluding lesions in the coronary or cerebral arteries, respectively, and in cases of poor wound healing, are also being developed. In this review, the current major and newly introduced preclinical angiogenesis assays are described and discussed in terms of their specific advantages and disadvantages from the biological, technical, economical and ethical perspectives. These assays include the corneal micropocket, chick chorioallantoic membrane, rodent mesentery, subcutaneous (s.c.) sponge/matrix/alginate microbead, s.c. Matrigel plug, s.c. disc, and s.c. directed in vivo angiogenesis assays, as well as, the zebrafish system and several additional assays. A note on quantitative techniques for assessing angiogenesis in patients is also included. The currently utilized preclinical assays are not equivalent in terms of efficacy or relevance to human disease. Some of these assays have significance for screening, while others are used primarily in studies of dosage-effects, molecular structure activities, and the combined effects of two or more agents on angiogenesis. When invited to write this review, I was asked to describe in some detail the rodent mesenteric-window angiogenesis assay, which has not received extensive coverage in previous reviews.

Keywords: angiogenesis assays, in vivo, methods, quantification, chick CAM assay, cornea assay, mesentery assay, sponge assay, matrix assay, Matrigel assay, disc assay, zebrafish assay, Xenopus tadpole assay, mouse, rat, rabbit

References

  • 1.Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF) J Cell Mol Med. 2005;9:777–94. doi: 10.1111/j.1582-4934.2005.tb00379.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Kinnaird T, Stablie E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94:68–85. doi: 10.1161/01.RES.0000118601.37875.AC. [DOI] [PubMed] [Google Scholar]
  • 3.Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res. 2004;94:230–8. doi: 10.1161/01.RES.0000110419.50982.1C. [DOI] [PubMed] [Google Scholar]
  • 4.StCroix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW. Genes expressed in human tumor endothelium. Science. 2000;289:1197–202. doi: 10.1126/science.289.5482.1197. [DOI] [PubMed] [Google Scholar]
  • 5.Jung YD, Ahmad SA, Liu W, Reinmuth N, Parikh A, Stoeltzing O, Fan F, Ellis LM. The role of the microenvironment and intercellular cross-talk in tumor angiogenesis. Semin Cancer Biol. 2002;12:105–12. doi: 10.1006/scbi.2001.0418. [DOI] [PubMed] [Google Scholar]
  • 6.Norrby K. Mast cells and angiogenesis. APMIS. 2002;110:355–71. doi: 10.1034/j.1600-0463.2002.100501.x. [DOI] [PubMed] [Google Scholar]
  • 7.Affara NI, Robertson FM. Vascular endothelial growth factor as a survival factor in tumor-associated angiogenesis. In Vivo. 2004;18:525–42. [PubMed] [Google Scholar]
  • 8.Fidler IJ, Ellis LM. Chemotherapeutic drugs - more really is not better. Nat Med. 2000;6:500–2. doi: 10.1038/74969. [DOI] [PubMed] [Google Scholar]
  • 9.Rouslahti E, Rajotte D. An address system in the vasculature of normal tissues and tumors. Annu Rev Immunol. 2000;18:813–27. doi: 10.1146/annurev.immunol.18.1.813. [DOI] [PubMed] [Google Scholar]
  • 10.Hasan J, Shnyder SD, Bibby M, Double JA, Bicknell R, Jayson GC. Quantitative angiogenesis assays in vivo - a review. Angiogenesis. 2004;7:1–16. doi: 10.1023/B:AGEN.0000037338.51851.d1. [DOI] [PubMed] [Google Scholar]
  • 11.Vallee BL, Riordan JF, Lobb RR, Higachi N, Fett JW, Crossley G, Bühler R, Budzik G, Breddam K, Bethune JL, Alderman EM. Tumor-derived angiogenesis factors from rat Walker 256 carcinoma: an experimental investigation and review. Experientia. 1985;41:1–15. doi: 10.1007/BF02005853. [DOI] [PubMed] [Google Scholar]
  • 12.Auerbach R, Auerbach W, Polakowski I. Assays for angiogenesis: a review. Pharmac Ther. 1991;51:1–11. doi: 10.1016/0163-7258(91)90038-n. [DOI] [PubMed] [Google Scholar]
  • 13.Jain RK, Schlenger K, Höckel M, Yuan F. Quantitative angiogenesis assays: progress and problems. Nat Med. 1997;3:1203–8. doi: 10.1038/nm1197-1203. [DOI] [PubMed] [Google Scholar]
  • 14.Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N. Angiogenesis assays: a critical overview. Clin Chem. 2003;49:32–40. doi: 10.1373/49.1.32. [DOI] [PubMed] [Google Scholar]
  • 15.Gimbrone MA, Cotran RS, Leapman SB, Folkman J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst. 1974;52:413–27. doi: 10.1093/jnci/52.2.413. [DOI] [PubMed] [Google Scholar]
  • 16.Auerbach R, Kubai L, Knighton D, Folkman J. A simple procedure for the long-term cultivation of chicken embroys. Dev Biol. 1974;41:391–4. doi: 10.1016/0012-1606(74)90316-9. [DOI] [PubMed] [Google Scholar]
  • 17.Ausprunk DH, Knighton DR, Folkman J. Differentiation of vascular endothelium in the chick choriallantois: a structural and autoradiographic atudy. Dev Biol. 1974;38:237–48. doi: 10.1016/0012-1606(74)90004-9. [DOI] [PubMed] [Google Scholar]
  • 18.Ausprunk DH, Knighton DR, Folkman J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am J Pathol. 1975;79:597–628. [PMC free article] [PubMed] [Google Scholar]
  • 19.Folkman J. Tumor angiogenesis. Adv Cancer Res. 1974;19:331–9. doi: 10.1016/s0065-230x(08)60058-5. [DOI] [PubMed] [Google Scholar]
  • 20.Apple DJ, Naumann GOH, Manthey RM. Microscopic anatomy of the eye. In: Naumann GOH, Apple DJ, editors. Pathology of the eye. New York: Springer-Verlag; 1985. pp. 19–62. [Google Scholar]
  • 21.Ziche M, Alessandri G, Gullino PM. Gangliosides promote the angiogenic response. Lab Invest. 1989;61:629–34. [PubMed] [Google Scholar]
  • 22.Auerbach R, Akhtar N, Lewis RL, Shinners BL. Angiogenesis assays: problems and pitfalls. Cancer Metast Rev. 2000;19:167–72. doi: 10.1023/a:1026574416001. [DOI] [PubMed] [Google Scholar]
  • 23.Morbidelli L, Ziche M. The rat and the rabbit cornea assay. In: Maragoudakis ME, editor. Angiogenesis: models, modulators, and clinical applications. New York: Plenum Press; 1998. pp. 39–45. [Google Scholar]
  • 24.Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J, D’Amato RJ. A model of angiogenesis in the mouse cornea. Invest Ophthalmol. 1996;37:1625–32. [PubMed] [Google Scholar]
  • 25.Conrad TJ, Chandler DB, Corless JM, Klintworth GK. In vivo measurement of corneal angiogenesis with video data acquisition and computerized image analysis. Lab Invest. 1994;70:426–34. [PubMed] [Google Scholar]
  • 26.Ribatti D, Vacca A. Models for studying angiogenesis in vivo. Int J Biol Markers. 1999;14:207–13. doi: 10.1177/172460089901400403. [DOI] [PubMed] [Google Scholar]
  • 27.Muthukkaruppan VR, Auerbach R. Angiogenesis in the mouse cornea. Science. 1979;205:1416–8. doi: 10.1126/science.472760. [DOI] [PubMed] [Google Scholar]
  • 28.Muthukkaruppan VR, Kubai L, Auerbach R. Tumorinduced neovascularization in the mouse eye. J Natl Cancer Inst. 1982;69:699–708. [PubMed] [Google Scholar]
  • 29.Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE. Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Path. 2004;85:233–448. doi: 10.1111/j.0959-9673.2004.00396.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Folkman J. Tumor angiogenesis. Adv Cancer Res. 1985;43:175–203. doi: 10.1016/s0065-230x(08)60946-x. [DOI] [PubMed] [Google Scholar]
  • 31.Wilting J, Christ B. A morphological study of the rabbit corneal assay. Ann Anat. 1992;174:549–56. doi: 10.1016/s0940-9602(11)80319-5. [DOI] [PubMed] [Google Scholar]
  • 32.Knighton DR, Fiegel VD, Phillips GD. Clinical and experimental approaches to dermal and epidermal repair: normal and chronic wounds. Wiley-Liss, Inc; 1991. The assay of angiogenesis; pp. 291–9. [Google Scholar]
  • 33.Ziche M. Corneal assay for angiogenesis. In: Murray JC, editor. Methods in molecular medicine, Vol. 46: Angiogenesis protocols. Totowa, NJ, USA: Humana Press Inc; 2001. pp. 131–42. [DOI] [PubMed] [Google Scholar]
  • 34.De Fouw DO, Rizzo VJ, Steinfeld R, Feinberg RN. Mapping the microcirculation in the chick chorioallantoic membrane during normal angiogenesis. Microvasc Res. 1989;38:136–47. doi: 10.1016/0026-2862(89)90022-8. [DOI] [PubMed] [Google Scholar]
  • 35.Rahn H, Paganelli CV, Ar A. The avian egg: air-cell gas tension, metabolism and incubation time. Respir Physiol. 1974;22:297–309. doi: 10.1016/0034-5687(74)90079-6. [DOI] [PubMed] [Google Scholar]
  • 36.Patan S, Alvarez MJ, Schittny JC, Burri PH. Intussusceptive microvascular growth: a common alternative to capillary sprouting. Arch Histol Cytol. 1992;55:65–75. doi: 10.1679/aohc.55.suppl_65. [DOI] [PubMed] [Google Scholar]
  • 37.Schlatter P, König MF, Karlsson LM, Burri PH. Quantitative study of intussusceptive capillary growth in the chorioallantoic membrane (CAM) of the chicken embryo. Microvasc Res. 1997;54:65–73. doi: 10.1006/mvre.1997.2022. [DOI] [PubMed] [Google Scholar]
  • 38.Ribatti D, Vacca A, Roncali L, Dammacco F. The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int J Dev Biol. 1996;40:1189–97. [PubMed] [Google Scholar]
  • 39.Ribatti D. The first evidence of the tumor-induced angiogenesis in vivo by using the chorioallantoic membrane assay dated 1913. Leukemia. 2004;18:1350–1. doi: 10.1038/sj.leu.2403411. [DOI] [PubMed] [Google Scholar]
  • 40.Murphy JB. Transplantability of tissues to the embryo of foreign species. Its bearing on questions of tissue specificity and tumor immunity. J Exp Med. 1913;17:482–93. doi: 10.1084/jem.17.4.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Knighton D, Ausprunk D, Tapper D, Folkman J. Avascular and vascular phases of tumour growth in the chick embryo. Br J Cancer. 1977;35:347–56. doi: 10.1038/bjc.1977.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Ribatti D, De Falco G, Nico B, Ria R, Crivellato E, Vacca A. In vivo time-course of the angiogenic response induced by multiple myeloma plasma cells in the chick embryo chorioallantoic membrane. J Anat. 2003;203:323–8. doi: 10.1046/j.1469-7580.2003.00220.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Barnhill RL, Ryan TJ. Biochemical modulation of angiogenesis in the chorioallantoic membrane of the chick embryo. J Invest Dermatol. 1983;81:485–8. doi: 10.1111/1523-1747.ep12522728. [DOI] [PubMed] [Google Scholar]
  • 44.Andrade SP, Fan T-PD, Lewis GP. Quantitative in-vivo studies on angiogenesis in a rat sponge model. Br J Path. 1987;68:755–66. [PMC free article] [PubMed] [Google Scholar]
  • 45.Vu MT, Smith CF, Burger PC, Klintworth GK. An evaluation of methods to quantitate the chick chorioallantoic membrane assay in angiogenesis. Lab Invest. 1985;53:499–508. [PubMed] [Google Scholar]
  • 46.Brooks PC, Montgomery AM, Cheresh DA. Use of the 10-day-old chick embryo model for studying angiogenesis. Methods Mol Biol. 1999;129:257–69. doi: 10.1385/1-59259-249-X:257. [DOI] [PubMed] [Google Scholar]
  • 47.Maragoudakis ME, Panoutsacopoulou M, Sarmonika M. Rate of basement membrane biosynthesis as an index to angiogenesis. Tissue Cell. 1988;20:531–9. doi: 10.1016/0040-8166(88)90055-9. [DOI] [PubMed] [Google Scholar]
  • 48.Thompson WD, Campell R, Evans T. Fibrin degradation and angiogenesis: quantitative analysis of the angiogenic response in the chick chorioallantoic membrane. J Pathol. 1985;145:27–37. doi: 10.1002/path.1711450103. [DOI] [PubMed] [Google Scholar]
  • 49.Splawinski J, Michna M, Palczak R, Konturek S, Splawinska B. Angiogenesis: quantitative assessment by the chick chorioallantoic membrane assay. Methods Find Exp Clin Oharmacol. 1988;10:221–6. [PubMed] [Google Scholar]
  • 50.Wilting J, Christ B, Bokeloh M, Weich HA. In vivo effects of vascular endothelial growth factor on the chicken chorioallantoic membrane. Cell Tiss Res. 1993;274:163–72. doi: 10.1007/BF00327997. [DOI] [PubMed] [Google Scholar]
  • 51.Wilting J, Christ B, Bokeloh M. A modified chorioallantoic membrane (CAM) assay for qualitative and quantitative study of growth factors. Anat Embryol. 1991;183:259–71. doi: 10.1007/BF00192214. [DOI] [PubMed] [Google Scholar]
  • 52.West DC, Thompson WD, Sells PG, Burbridge MF. Angiogenesis assays using chick chorioallantoic membrane. In: Murray JC, editor. Methods in molecular medicine, Vol. 46: Angiogenesis protocols. Totowa, NJ, USA: Humana Press Inc; 2001. pp. 107–29. [DOI] [PubMed] [Google Scholar]
  • 53.Jakob W, Jentzsch KD, Mauersberger B, Heder G. The chick embryo chorioallantoic membrane as a bioassay for angiogenesis factors: reactions induced by carrier materials. Exp Path. (Jena) 1978;15:241–9. doi: 10.1016/s0014-4908(78)80064-7. [DOI] [PubMed] [Google Scholar]
  • 54.Norrby K, Jakbsson A, Sörbo J. Mast-cell-mediated angiogenesis: a novel experimental model using the rat mesentery. Virchows Arch. [Cell Pathol.] 1986;52:195–206. doi: 10.1007/BF02889963. [DOI] [PubMed] [Google Scholar]
  • 55.Norrby K, Jakobsson A, Sörbo J. Quantitative angiogenesis in spreads of intact rat mesenteric windows. Microvasc Res. 1990;39:341–8. doi: 10.1016/0026-2862(90)90047-u. [DOI] [PubMed] [Google Scholar]
  • 56.Norrby K. Basic fibroblast growth factor and de novo mammalian angiogenesis. Microvasc Res. 1994;48:96–113. doi: 10.1006/mvre.1994.1041. [DOI] [PubMed] [Google Scholar]
  • 57.Norrby K, Mattsby-Baltzer I, Innocenti M, Tuneberg S. Orally administered bovine lactoferrin systemically inhibits VEGF165-mediated angiogenesis in the rat. Int J Cancer. 2001;91:236–40. doi: 10.1002/1097-0215(200002)9999:9999<::aid-ijc1024>3.3.co;2-k. [DOI] [PubMed] [Google Scholar]
  • 58.Norrby K. Vascular endothelial growth factor and de novo mammalian angiogenesis. Microvasc Res. 1996;51:153–63. doi: 10.1006/mvre.1996.0017. [DOI] [PubMed] [Google Scholar]
  • 59.Norrby K. Microvascular density in terms of number and length of microvessel segments per unit tissue volume in mammalian angiogenesis. Microvasc Res. 1998;55:43–53. doi: 10.1006/mvre.1997.2054. [DOI] [PubMed] [Google Scholar]
  • 60.Naslund I, Norrby K. NO and de novo mammalian angiogenesis: further evidence that NO inhibits bFGF-induced angiogenesis while not influencing VEGF165- induced angiogenesis. APMIS. 2000;108:29–37. doi: 10.1034/j.1600-0463.2000.d01-2.x. [DOI] [PubMed] [Google Scholar]
  • 61.Zweifach BW. The microcirculation in the intestinal mesentery. Microvasc Res. 1973;5:363–7. doi: 10.1016/0026-2862(73)90051-4. [DOI] [PubMed] [Google Scholar]
  • 62.Wang W-V, Whittles CE, Harper SJ, Bates DO. An adenovirus-mediated gene-transfer model of angiogenesis in rat mesentery. Microcircul. 2004;11:361–75. doi: 10.1080/10739680490437568. [DOI] [PubMed] [Google Scholar]
  • 63.Zweifach BW. Direct observations of mesenteric circulation in experimental animals. Anat Rec. 1954;120:277–91. doi: 10.1002/ar.1091200115. [DOI] [PubMed] [Google Scholar]
  • 64.Malcherek P, Franzén L. A new method for the study of angiogenesis in connective tissue repair. Microvasc Res. 1991;42:217–23. doi: 10.1016/0026-2862(91)90089-t. [DOI] [PubMed] [Google Scholar]
  • 65.Norrby K, Enestrom S. Cellular and extracellular changes following mast-cell secretion in avascular rat mesentery. An electron-microscopic study. Cell Tiss Res. 1984;235:339–45. doi: 10.1007/BF00217858. [DOI] [PubMed] [Google Scholar]
  • 66.Franzén L, Norrby K. Different proliferative responsivenss of fibroblasts and mesothelial cells in the rat mesentery following administration of compound 48/80 at various hours of the day. Virchows Arch. [Cell Pathol.] 1977;24:91–9. doi: 10.1007/BF02889270. [DOI] [PubMed] [Google Scholar]
  • 67.Enerback L, Franzén L, Norrby K. A tissue model for the study of cell proliferation parameters in vivo. Histochemistry. 1976;47:207–18. doi: 10.1007/BF00489963. [DOI] [PubMed] [Google Scholar]
  • 68.Norrby K, Enerback L, Franzén L. Mast cell activation and tissue cell proliferation. Cell Tiss Res. 1976;170:289–303. doi: 10.1007/BF00219412. [DOI] [PubMed] [Google Scholar]
  • 69.Norrby K, Jakobsson A, Sörbo J. Age-dependent mastcell-mediated angiogenesis. APMIS. 1988;2:251–61. [PubMed] [Google Scholar]
  • 70.Hansen-Smith FM, Joswiak GR, Baustert JL. Regional differences in spontaneously occuring angiogenesis in the adult rat mesentery. Microvasc Res. 1994;47:369–76. doi: 10.1006/mvre.1994.1029. [DOI] [PubMed] [Google Scholar]
  • 71.Hansen-Smith FM. Capillary network patterning during angiogenesis. Clin Exp Pharmacol Physiol. 2000;27:830–5. doi: 10.1046/j.1440-1681.2000.03341.x. [DOI] [PubMed] [Google Scholar]
  • 72.Jakobsson AE. Angiogenesis induced by mast cell secretion in rat peritoneal connective tissue is a process of three phases. Microvasc Res. 1994;47:252–69. doi: 10.1006/mvre.1994.1019. [DOI] [PubMed] [Google Scholar]
  • 73.Nehls V, Drenckhahn D. Demonstration of actin filament stress fibers in microvascular endothelial cells in situ. Microvasc Res. 1991;42:103–12. doi: 10.1016/0026-2862(91)90078-p. [DOI] [PubMed] [Google Scholar]
  • 74.Zeller PJ, Skalak TC, Ponce AM, Price RJ. In vivo chemotactile properties and spatial expression of PDGF in developing mesenteric microvascular networks. Am J Physiol Heart Circ Physiol. 2001;280:H2116–25. doi: 10.1152/ajpheart.2001.280.5.H2116. [DOI] [PubMed] [Google Scholar]
  • 75.Ponce AM, Price RJ. Angiogenic stimulus determines the positioning of pericytes within capillary sprouts in vivo. Microvasc Res. 2003;65:45–8. doi: 10.1016/s0026286202000146. [DOI] [PubMed] [Google Scholar]
  • 76.Murfee WL, Skalak TC, Peirce SM. Differential arterial/venous expression of NG2 proteoglycan in perivascular cells along microvessels: identifying a venule-specific phenotype. Microcirculation. 2005;12:151–60. doi: 10.1080/10739680590904955. [DOI] [PubMed] [Google Scholar]
  • 77.Murfee WL, Rehorn MR, Peirce SM, Skalak TC. Perivascular cells along venules upregulate NG2 expression during microvascular remodeling. Microcirculation. 2006;13:261–73. doi: 10.1080/10739680600559153. [DOI] [PubMed] [Google Scholar]
  • 78.Rasio E. The physiology of fluid exchange between the circulation and the body cavities. In: Jones JSP, editor. Pathology of the mesothelium. London: Springer Verlag; 1987. pp. 15–32. [Google Scholar]
  • 79.Norrby K, Jakobsson A, Sörbo J. Mast-cell secretion and angiogenesis, a quantitative study in rats and mice. Virchows Arch. [Cell Pathol.] 1989;57:251–6. doi: 10.1007/BF02899089. [DOI] [PubMed] [Google Scholar]
  • 80.Norrby K. Interleukin-1-alpha and de novo mammalian angiogenesis. Microvasc Res. 1997;54:58–64. doi: 10.1006/mvre.1997.2024. [DOI] [PubMed] [Google Scholar]
  • 81.Norrby K. Interleukin-8 and de novo mammmalian angiogenesis. Cell Prolif. 1996;29:315–23. doi: 10.1111/j.1365-2184.1996.tb01583.x. [DOI] [PubMed] [Google Scholar]
  • 82.Norrby K. TNF-alpha and de novo mammalian angiogenesis. Microvasc Res. 1996;52:79–83. doi: 10.1006/mvre.1996.0045. [DOI] [PubMed] [Google Scholar]
  • 83.Lennernas B, Albertsson P, Lennernas H, Norrby K. Chemotherapy and antiangiogenesis. Drug-specific, dose-related effects. Acta Oncol. 2003;42:294–303. doi: 10.1080/02841860310001835. [DOI] [PubMed] [Google Scholar]
  • 84.Dredge K, Horsfall R, Robinson SP, Zhang L-H, Lu L, Tang Y, Shirley MA, Muller G, Schafer P, Stirling D, Dalgleish AG, Bartlett JB. Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vivo. Microvasc Res. 2005;69:56–63. doi: 10.1016/j.mvr.2005.01.002. [DOI] [PubMed] [Google Scholar]
  • 85.Rhodin JAG, Fujita H. Capillary growth in the mesentery of normal young rats. Intravital video and electron microscope analyses. J Submicrosc Cytol Pathol. 1989;21:1–34. [PubMed] [Google Scholar]
  • 86.Nehls V, Denzer K, Drenckhahn D. Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res. 1992;270:469–74. doi: 10.1007/BF00645048. [DOI] [PubMed] [Google Scholar]
  • 87.Mukhopadhyay D, Nagy JA, Manseau EJ, Dvorak HF. Vascular permeability factor/vascular endothelial growth factor-mediated signaling in mouse mesentery vascular endothelium. Cancer Res. 1998;58:1278–84. [PubMed] [Google Scholar]
  • 88.Cai J, Jiang WG, Ahmed A, Boulton M. Vascular endothelial growth factor-induced endothelial cell proliferation is regulated by interaction between VEGFR-2, SHPTP1 and eNOS. Microvasc Res. 2006;71:20–31. doi: 10.1016/j.mvr.2005.10.004. [DOI] [PubMed] [Google Scholar]
  • 89.Albertsson P, Lennernas B, Norrby K. On metronomic chemotherapy: modulation of angiogenesis mediated by VEGF-A. Acta Oncol. 2006;45:144–55. doi: 10.1080/02841860500417486. [DOI] [PubMed] [Google Scholar]
  • 90.Norrby K. 2.5 kDa and 5.0 kDa heparin fragments specifically inhibit microvessel sprouting and network formation in VEGF165-mediated mammalian angiogenesis. Int J Exp Path. 2000;81:191–8. doi: 10.1046/j.1365-2613.2000.00150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Norrby K. Low-molecular-weight heparins and angiogenesis. APMIS. 2006;114:79–102. doi: 10.1111/j.1600-0463.2006.apm_235.x. [DOI] [PubMed] [Google Scholar]
  • 92.Franzén L, Norrby K. A tissue model for quantitative studies on time course of healing, rate of healing, and cell proliferation after wounding. APMIS. 1983;91:281–9. doi: 10.1111/j.1699-0463.1983.tb02758.x. [DOI] [PubMed] [Google Scholar]
  • 93.Franzén L, Ghassemifar R, Malcherek P. Experimental mast cell activation improves connective tissue repair in the perforated rat mesentery. Agent Actions. 1991;33:371–7. doi: 10.1007/BF01986588. [DOI] [PubMed] [Google Scholar]
  • 94.Norrby K, Woolley D. Role of mast cells in mitogenesis and angiogenesis in normal tissue and tumour tissue. Adv Biosci. 1993;89:71–116. [Google Scholar]
  • 95.Andrade SP, Fan TP, Lewis GP. Quantitative in-vivo studies on angiogenesis in a rat sponge model. Br J Exp Pathol. 1987;68:755–66. [PMC free article] [PubMed] [Google Scholar]
  • 96.Andrade S. Sponge implant model of angiogenesis. In: Murray JC, editor. Methods in molecular medicine, Vol. 46: Angiogenesis protocols. Totowa, NJ, USA: Humana Press Inc; 2001. pp. 77–86. [DOI] [PubMed] [Google Scholar]
  • 97.Thiede K, Momburg F, Zangemeister U, Schlag P, Schirrmacher V. Growth and metastasis of human tumors in nude mice following tumor-cell inoculation into a vascularized polyurethane sponge matrix. Int J Cancer. 1988;42:939–45. doi: 10.1002/ijc.2910420625. [DOI] [PubMed] [Google Scholar]
  • 98.Fajardo L-F, Kowalski J, Kwan HH, Prionas SD, Allison AC. The disc angiogenesis system. Lab Invest. 1988;58:718–24. [PubMed] [Google Scholar]
  • 99.Allison AC, Fajardo L-F. Disc angiogenesis assay. In: Murray JC, editor. Methods in molecular medicine, Vol. 46: Angiogenesis protocols. Totowa, NJ, USA: Humana Press Inc; 2001. pp. 59–75. [DOI] [PubMed] [Google Scholar]
  • 100.Plunkett ML, Hailey JA. An in vivo quantitative angiogenesis model using tumor cells entrapped in alginate. Lab Invest. 1990;62:510–7. [PubMed] [Google Scholar]
  • 101.Ko CY, Dixit V, Shaw WW, Gitnick G. Extensive in vivo angiogenesis from controlled release of endothelial cell growth factor: implications for cell transplantation and wound healing. J Contr Rel. 1997;44:209–14. [Google Scholar]
  • 102.Robertson NE, Discafani CM, Downs EC, Hailey JA, Sarre O, Runkle RL, Popper TL, Plunkett ML. A quantitative in vivo mouse model to assay inhibitors of tumor-induced angiogenesis. Cancer Res. 1991;51:1339–44. [PubMed] [Google Scholar]
  • 103.Ko CY, Dixit V, Shaw WW, Gitnick G. Alginate microbead release assay of angiogenesis. In: Murray JC, editor. Methods in molecular medicine, Vol. 46: Angiogenesis protocols. Totowa, NJ, USA: Humana Press Inc; 2001. pp. 53–7. [DOI] [PubMed] [Google Scholar]
  • 104.Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest. 1992;67:519–28. [PubMed] [Google Scholar]
  • 105.Vukicevic S, Kleinman HK, Luyten FP, Roberts A, Roche NS, Reddi AH. Identification of multiple active growth factors in basement membrane matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res. 1992;202:1–8. doi: 10.1016/0014-4827(92)90397-q. [DOI] [PubMed] [Google Scholar]
  • 106.Baatout S. Endothelial differentiation using matrigel. Anticancer Res. 1997;17:451–6. [PubMed] [Google Scholar]
  • 107.Taub M, Wang Y, Szcesny TM, Kleinman HK. Epidermal growth factor or transforming growth factor alpha is required for kidney tubulogenesis in matrigel cultures in serum-free medium. Proc Natl Acad Sci. 1990;87:4002–6. doi: 10.1073/pnas.87.10.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Malinda KM. In vivo Matrigel migration and angiogenesis assays. In: Murray JC, editor. Methods in molecular medicine, Vol 46: Angiogeneis protocols. Totowa, NJ: Humana Press Inc; 2001. pp. 47–52. [DOI] [PubMed] [Google Scholar]
  • 109.Baker JHE, Huxman LA, Kyle AH, Lam KK, Minchinton AI. Vascular-specific quantification in an in vivo Matrigel chamber angiogenesis assay. Microvasc Res. 2006;71:69–75. doi: 10.1016/j.mvr.2006.01.002. [DOI] [PubMed] [Google Scholar]
  • 110.Anghelina M, Krishnan P, Moldovan L, Moldovan NI. Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am J Pathol. 2006;168:529–41. doi: 10.2353/ajpath.2006.050255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Kragh M, Hjarnaa PJ, Bramm E, Kristjansen PE, Rygaard J, Binderup L. In vivo chamber angiogenesis assay: an optimized Matrigel plug assay for fast assessment of anti-angiogenic activity. Int J Oncol. 2003;22:305–11. [PubMed] [Google Scholar]
  • 112.Ley CD, Olsen MW, Lund EL, Kristiansen PE. Angiogenic synergy of bFGF and VEGF is antagonized by angiopoietin-2 in a modified in vivo Matrigel assay. Microvasc Res. 2004;68:161–8. doi: 10.1016/j.mvr.2004.06.002. [DOI] [PubMed] [Google Scholar]
  • 113.Akhtar N, Dickerson EB, Auerbach R. The sponge/matrigel angiogenesis assay. Angiogenesis. 2002;5:75–80. doi: 10.1023/a:1021507031486. [DOI] [PubMed] [Google Scholar]
  • 114.Serbedzija GN, Flynn E, Willett CE. Zebrafish angiogenesis: a new model for drug screening. Angiogenesis. 1999;3:353–9. doi: 10.1023/a:1026598300052. [DOI] [PubMed] [Google Scholar]
  • 115.Ny A, Autiero M, Cameliet P. Zebrafish and Xenopus tadpoles: Small animal models to study angiogenesis and lymphangiogenesis. Exp Cell Res. 2006;312:684–93. doi: 10.1016/j.yexcr.2005.10.018. [DOI] [PubMed] [Google Scholar]
  • 116.Lee P, Goishi K, Davidson AJ, Mannix R, Zon L, Klagsbrun M. Neuropillin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Proc Natl Acad Sci USA. 2002;99:10470–5. doi: 10.1073/pnas.162366299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Chan J, Serluca FC. Chemical approaches to angiogenesis. Methods Cell Biol. 2004;76:475–87. [PubMed] [Google Scholar]
  • 118.Ober EA, Olofsson B, Mäkinen T, Jin S-W, Shoji W, Koh GY, Alitalo K, Stainier DYR. Vegfc is required for vascular development and endoderm morphogenesis in zebrafish. EMBO. 2004;5:7884. doi: 10.1038/sj.embor.7400047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Chen E, Stringer SE, Rusch MA, Selleck SB, Ekker SC. A unique role for 6-O sulfation modification in zebrafish vascular development. Dev Biol. 2005;284:364–76. doi: 10.1016/j.ydbio.2005.05.032. [DOI] [PubMed] [Google Scholar]
  • 120.Kajimura S, Aida K, Duan C. Understanding hypoxia-induced gene expression in early development: in vitro and in vivo analysis of hypoxia-inducible factor 1-regulated zebra fish insulin-like growth factor binding protein 1 gene expression. Mol Cell Biol. 2006;26:1142–55. doi: 10.1128/MCB.26.3.1142-1155.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Ekker SC. Morphants: a new systematic vertebrate function genomics approach. Yeast 200. 17:302–6. doi: 10.1002/1097-0061(200012)17:4<302::AID-YEA53>3.0.CO;2-#. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Isogai S, Horiguchi M, Weinstein BM. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol. 2001;230:278–301. doi: 10.1006/dbio.2000.9995. [DOI] [PubMed] [Google Scholar]
  • 123.Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248:307–18. doi: 10.1006/dbio.2002.0711. [DOI] [PubMed] [Google Scholar]
  • 124.Childs S, Chen JN, Garrity DM, Fishman MC. Patterning of angiogenesis in the zebrafish embryo. Development. 2002;129:973–82. doi: 10.1242/dev.129.4.973. [DOI] [PubMed] [Google Scholar]
  • 125.Seng WL, Eng K, Lee J, McGrath P. Use of a monoclonal antibody specific for activated endothelial cells to quantitate angiogenesis in vivo in zebrafish after drug treatment. Angiogenesis. 2004;7:243–53. doi: 10.1007/s10456-004-4181-7. [DOI] [PubMed] [Google Scholar]
  • 126.Levine AJ, Munoz-Sanjuan I, Bell E, North AJ, Brivanlou AH. Fluorescent labeling of endothelial cells allows in vivo, continuous characterization of the vascular development in. Xenopus laevis. Dev Biol. 2003;254:50–67. doi: 10.1016/s0012-1606(02)00029-5. [DOI] [PubMed] [Google Scholar]
  • 127.Rhodin JA, Lametschwandtner A. Circulatory pattern and structure in the tail and the tail fins of Xenopus laevis tadpoles. J Submicrosc Cytol Pathol. 1993;25:297–318. [PubMed] [Google Scholar]
  • 128.Ny A, Koch M, Schneider M, Neven E, Tong RT, Maity S, Fischer C, Plaisance S, Lambrechts D, Heligon C, Terclavers S, Ciesiolka M, Kalin R, Man WY, Senn I, Wyns S, Lupu F, Brandli A, Vleminckx K, Collen D, Dewerchin M, Conway E, Moons L, Jain RK, Carmeliet P. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med. 2005;11:998–1004. doi: 10.1038/nm1285. [DOI] [PubMed] [Google Scholar]
  • 129.Guedez L, Rivera AM, Salloum R, Miller ML, Diegmueller JJ, Bungay PM, Stetler-Stevenson WG. Quantitative assessment of angiogenic responses by the directed in vivo angiogenesis assay. Am J Pathol. 2003;162:31–9. doi: 10.1016/S0002-9440(10)64276-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.DeEguileor M, Tettamanti G, Grimaldi A, Perletti G, Congiu T, Rinaldi L, Valvassori R. Hirudo medicinalis: Avascular tissue for clear-cut angiogenesis studies. Curr Pharmaceut Des. 2004;10:1979–88. doi: 10.2174/1381612043384358. [DOI] [PubMed] [Google Scholar]
  • 131.Levasseur JE, Wei EP, Raper AJ, Kontos AA, Patterson JL. Detailed description of a cranial technique for acute and chronic experiments. Stroke. 1975;6:308–17. doi: 10.1161/01.str.6.3.308. [DOI] [PubMed] [Google Scholar]
  • 132.Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE, Messmer K, Jain RK. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 1992;52:6553–60. [PubMed] [Google Scholar]
  • 133.Leunig M, Yuan F, Berk DA, Gerweck LE, Jain RK. Angiogenesis and growth of isografted bone: quantitative in vivo assay in mice. Lab Invest. 1994;71:300–7. [PubMed] [Google Scholar]
  • 134.Lin PC. Optical imaging and tumor angiogenesis. J Cell Biochem. 2003;90:484–91. doi: 10.1002/jcb.10630. [DOI] [PubMed] [Google Scholar]
  • 135.Selye H. On the mechanism through which hydrocortisone affects the resistance of tissues to injury. J Am Med Assoc. 1953;152:1207–13. doi: 10.1001/jama.1953.63690130001006. [DOI] [PubMed] [Google Scholar]
  • 136.Casciari JJ, Hollingshead MG, Alley MC, Mayo JG, Malspeis L, Miyauchi S, Grever MR, Weinstein JN. Growth and chemotherapeutic response of cells in a hollow-fiber in vitro solid tumor model. J Natl Cancer Inst. 1994;86:1846–52. doi: 10.1093/jnci/86.24.1846. [DOI] [PubMed] [Google Scholar]
  • 137.Phillips RM, Pearce J, Loadman PM, Bibby MC, Cooper PA, Swaine DJ, Double JA. Angiogenesis in the hollow fiber tumor model influences drug delivery to tumor cells: implications for anticancer drug screening programs. Cancer Res. 1998;58:5263–6. [PubMed] [Google Scholar]
  • 138.Phillips RM, Bibby MC. Hollow fibre assay for tumour angiogenesis. In: Murray JC, editor. Methods in molecular medicine, Vol. 46: Angiogenesis protocols. Totowa, NJ, USA: Humana Press Inc; 2001. pp. 87–93. [DOI] [PubMed] [Google Scholar]
  • 139.Menger MD, Lehr HA. Scope and perspectives of intravital microscopy - bridge over from in vitro to in vivo. Immunol Today. 1993;14:519–22. doi: 10.1016/0167-5699(93)90179-O. [DOI] [PubMed] [Google Scholar]
  • 140.Leunig M, Messmer K. Intravital microscopy in tumor biology: current status and future perspectives. Int J Oncol. 1995;6:413–7. [PubMed] [Google Scholar]
  • 141.Sckell A, Leunig M. Dorsal skinfold chamber prepration in mice. In: Murray JC, editor. Methods in molecular medicine, Vol. 46: Angiogenesis protocols. Totowa, NJ, USA: Humana Press Inc; 2001. pp. 95–105. [DOI] [PubMed] [Google Scholar]
  • 142.Hoffman RM. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol. 2002;13:546–56. doi: 10.1016/s1470-2045(02)00848-3. [DOI] [PubMed] [Google Scholar]
  • 143.Yang M, Baranov E, Li XM, Wang JW, Jiang P, Li L, Moossa AR, Penman S, Hoffman RM. Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumors. Proc Natl Acad Sci. 2001;98:2616–21. doi: 10.1073/pnas.051626698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Brown EB, Campell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med. 2001;7:864–8. doi: 10.1038/89997. [DOI] [PubMed] [Google Scholar]
  • 145.Fukumura D, Yuan F, Monsky WL, Chen Y, Jain RK. Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol. 1997;151:679–88. [PMC free article] [PubMed] [Google Scholar]
  • 146.Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res. 2001;61:6020–4. [PubMed] [Google Scholar]
  • 147.Weidner N. Measuring intratumoral microvessel density. In: Maragoudakis ME, editor. Angiogenesis: models, modulators, and clinical applications. New York: Plenum Press; 1998. pp. 61–74. [Google Scholar]
  • 148.Hasan J, Byers R, Jayson GC. Intra-tumoural microvessel density in human solid tumours. Br J Cancer. 2002;86:1566–77. doi: 10.1038/sj.bjc.6600315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Fox SB, Harris AL. Histological quantitation of tumour angiogenesis. APMIS. 2004;112:413–30. doi: 10.1111/j.1600-0463.2004.apm11207-0803.x. [DOI] [PubMed] [Google Scholar]
  • 150.Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst. 2002;94:883–93. doi: 10.1093/jnci/94.12.883. [DOI] [PubMed] [Google Scholar]
  • 151.Brekken RA, Huang X, King SW, Thorpe PE. Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res. 1998;58:1952–9. [PubMed] [Google Scholar]
  • 152.Duff SE, Li C, Garland JM, Kumar S. CD105 is important for angiogenesis: evidence and potential applications. FASEB J. 2003;17:984–92. doi: 10.1096/fj.02-0634rev. [DOI] [PubMed] [Google Scholar]
  • 153.Kumar S, Ghellal A, Li C, Byrne G, Haboubi N, Wang JM, Bundred N. Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res. 1999;59:856–61. [PubMed] [Google Scholar]
  • 154.Gasparini G, Brooks PC, Biganzoli E, Vermeulen PB, Bonoldi E. Dixit L, Ranieri G, Miceli R, Cheresh DA. Vascular integrin alphavbeta3: a new prognostic indicator in breast cancer. Clin Cancer Res. 1998;4:2625–34. [PubMed] [Google Scholar]
  • 155.Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, McCulloch P, Pezzella F, Viale G, Weidner N, Harris AL, Dirix LY. Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer. 1996;32A:2474–84. doi: 10.1016/s0959-8049(96)00379-6. [DOI] [PubMed] [Google Scholar]
  • 156.Norrby K, Ridell B. Tumour-type-specific capillary endothelial cell stainability in malignant B-cell lymphomas using antibodies against CD31, CD34 and Factor VIII. APMIS. 2003;111:483–9. doi: 10.1034/j.1600-0463.2003.1110406.x. [DOI] [PubMed] [Google Scholar]
  • 157.Neeman M. Assessment of angiogenesis by MRI. In: Maragoudakis ME, editor. Angiogenesis: models, modulators, and clinical applications. New York: Plenum Press; 1998. pp. 55–60. [Google Scholar]
  • 158.Rajendran JG, Krohn KA. Imaging hypoxia and angiogenesis in tumors. Radiol Clin N Am. 2005;43:169–87. doi: 10.1016/j.rcl.2004.08.004. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES