Abstract
Carbon monoxide (CO) is an endogenously derived gas formed from the breakdown of heme by the enzyme heme oxygenase. Although long considered an insignificant and potentially toxic waste product of heme catabolism, CO is now recognized as a key signaling molecule that regulates numerous cardiovascular functions. Interestingly, alterations in CO synthesis are associated with many cardiovascular disorders, including atherosclerosis, septic shock, hypertension, metabolic syndrome, and ischemia-reperfusion injury. Significantly, restoration of physiologic CO levels exerts a beneficial effect in many of these settings, suggesting a crucial role for CO in maintaining cardiovascular homeostasis. In this review, we outline the actions of CO in the cardiovascular system and highlight this gas as a potential therapeutic target in treating a multitude of cardiovascular disorders.
Keywords: carbon monoxide, heme oxygenase-1, vascular smooth muscle, endothelium, atherosclerosis, restenosis, ischemia-reperfusion, blood pressure
References
- 1.Smith RP. Toxic responses of the blood. In: Klaassen CD, Amdur MO, Doull J, editors. Casarett and Doull’s Toxiclogy, the basic science of poisons. 3rd edition. New York: MacMillan Publishing Company; 1986. pp. 233–44. [Google Scholar]
- 2.Piantadosi CA. Biological chemistry of carbon monoxiode. Antioxid Redox Signal. 2002;4:599–70. doi: 10.1089/152308602753666316. [DOI] [PubMed] [Google Scholar]
- 3.Sjorstrand T. Endogenous Formation of carbon monoxide in man under normal and pathophysiological conditions. Scand J Clin Lab Invest. 1949;1:201–14. [Google Scholar]
- 4.Vreman HJ, Wong RJ, Stevenson DK. Carbon monoside in breath, blood, and other tissues. In: Penney DG, editor. Carbon Monoxide Toxicity. Boca Raton. FL.: CRC Press; 2000. pp. 19–59. [Google Scholar]
- 5.Coburn RF, Williams WJ, Forster RE. Effect of Erythrocyte Destruction on carbon monoside production in man. J Clin Invest. 1965;43:1098–103. doi: 10.1172/JCI104994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Maines MD. Heme oxygenase: funcation, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1989;2:2557–68. [PubMed] [Google Scholar]
- 7.Durante W. Carbon monoside and bile pigments: surprising mediators of vascular function. Vasc Med. 2002;7:195–202. doi: 10.1191/1358863x02vm424ra. [DOI] [PubMed] [Google Scholar]
- 8.Marks GS, Brien JF, Nakatsu K, McLaughlin BE. Does carbon monoxide have a physiological function. Trends Pharmacal Sci. 1991;12:185–8. doi: 10.1016/0165-6147(91)90544-3. [DOI] [PubMed] [Google Scholar]
- 9.Wang LJ, Lee TS, Lee FY, Pai RC, Chau LY. Expression of heme oxygenase-1 in atherosclerotic lesions. Am J Pathol. 1988;152:711–20. [PMC free article] [PubMed] [Google Scholar]
- 10.Agarwal A, Balla J, Balla G, Croatt AJ, Vercellotti GM, Nath KA. Renal tubular epithelial cells mimic endothelial cells upon exposure to oxidized LDL. Am J Physiol Renal Physiol. 1996;271:F814–23. doi: 10.1152/ajprenal.1996.271.4.F814. [DOI] [PubMed] [Google Scholar]
- 11.Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kashara Y, Koizumi S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 1999;103:129–35. doi: 10.1172/JCI4165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Kawashima A, Oda T, Yachie A. Koizumi S, Nakanishi I. Heme oxygenase-1 deficiency: the first autopsy case. Hum Pathol. 2002;33:125–30. doi: 10.1053/hupa.2002.30217. [DOI] [PubMed] [Google Scholar]
- 13.Chen YH, Lin SY, Lin MW, Tsai HL, Kuo SS, Chen JW, Charng MJ, Wu TC, Chen LC, Ding YA, Pan WH, Jou YS, Chau LY. Microsatellite polymorphism in promote of heme oxygenase-1 gene is associated with susceptibility to coronary artery disease in type II diabetic patiets. Hum Genet. 2002;111:1–8. doi: 10.1007/s00439-002-0769-4. [DOI] [PubMed] [Google Scholar]
- 14.Kaneda H, Ohno M, Taguchi J, Hashimoto H, Ogasawura T, Aizawa T, Ishizaka N, Nagai R. Heme oxugenase-1 gene promoter polymorphism is associated with coronary artery disease in Japanese patients with coronary risk factors. Arterioscler Thromb Vasc Biol. 2002;22:1680–5. doi: 10.1161/01.atv.0000033515.96747.6f. [DOI] [PubMed] [Google Scholar]
- 15.Endler G, Exner M, Schillinger M, Marculescu R, Sunder-Plassmann R, Raith M, Jordanova N, Wojita J, Mannhalter C, Wagner OF, Huber K. A microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with increased bilirubin and HDL levels but not with coronary artery disease. Thromb Haemostasis. 2004;91:155–61. doi: 10.1160/TH03-05-0291. [DOI] [PubMed] [Google Scholar]
- 16.Ishikawa K, Sugaware D, Goto J, Watanabe K, Kawamura S, Shiomi M, Itabe H, Maruyama Y. Heme oxygenase-1 inhibits atherogensis in Watanabe heritable hyperlipidemic rabbits. Circulation. 2001;104:1831–6. doi: 10.1161/hc3901.095897. [DOI] [PubMed] [Google Scholar]
- 17.Ishikawa K. Sugaware D, Wang XP, Suzuki K, Itabe H, Maruyama Y, Lusis AJ. Heme oxygenase-1 inhibits atherosclerosis lesion formation in Idl-receptor knockout mice. Circ Res. 2001;88:506–12. doi: 10.1161/01.res.88.5.506. [DOI] [PubMed] [Google Scholar]
- 18.Juan SH, Lee TS, Tseng KW, Liou JY, Shyue SK, Wu KK, Chau LY. Adenovirus-mediated heme oxygenasegene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2001;104:1519–25. doi: 10.1161/hc3801.095663. [DOI] [PubMed] [Google Scholar]
- 19.Yet SF, Layne MD, Liu X, Chen YH, Ith B, Sibinga NE, Perrella MA. Absnce of heme oxygenase-1 exacerbates atherosclerosis lesion formation and vascular remodeling. FASEB J. 2003;17:1759–61. doi: 10.1096/fj.03-0187fje. [DOI] [PubMed] [Google Scholar]
- 20.Otterbein LE, Zuckerbraun BS, Haga M, Liu F, Song R, Usheva A, Stachulak C, Bodyak N, Neil Smith R, Czismadia E, Tyagi S, Akamatsu Y, Flavell RJ, Billiar TR, Tzeng E, Bach FH, Choi AMK, Soares MP. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med. 2003;9:183–90. doi: 10.1038/nm817. [DOI] [PubMed] [Google Scholar]
- 21.Sato K, Balla J, Ottervein LE, Smith RN, Brouard S, Lin Y, Csizmadia E, Sevigny J, Robson SC, Vercellotti G, Choi AM, Bach FH. Soares MP. Carbon monoxide generated by heme oxygenase-1 suppresses the tejection of mouse-to-rat cardiac transplants. J Immunol. 2001;166:4185–94. doi: 10.4049/jimmunol.166.6.4185. [DOI] [PubMed] [Google Scholar]
- 22.Song R, Kubo M, Morse D, Zhou Z, Zhang X, Dauber JH, Favisiak J, Alber SM, Watkins SC, Zuckerbraun BS, Otterbein LE, Ning W, Oury TD, Lee Pj, McCurry KR, Choi AM. Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inflammatory and anti-apoptotic effects. Am J Pathol. 2003;163:231–42. doi: 10.1016/S0002-9440(10)63646-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Neto JS, Atsunori N, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, Nalesnik MA, Otterbein LE, Murase N. Protection of transplant-induced renal ischemia/reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol. 2004;287:F979–89. doi: 10.1152/ajprenal.00158.2004. [DOI] [PubMed] [Google Scholar]
- 24.Aizawa T, Ishizaka N, Taguchi J, Kimura S, Kurokawa K, Ohno M. Balloon injury does not induce heme oxygenase-1 gene expression, but administration of hemin ingibits neointimal formation in balloon injured rat carotid arteies. Biochem Biophys Res Commun. 1999;261:302–7. doi: 10.1006/bbrc.1999.1020. [DOI] [PubMed] [Google Scholar]
- 25.Togne Y, Toshisuki M, Suematsu M, Ishimura Y. Yamazaki J, Katayama S. Protective roles of endogenous carbon monoxide in neintimal development elicited by arterial injury. Am J Physiol Heart Circ Physiol. 2000;278:H623–32. doi: 10.1152/ajpheart.2000.278.2.H623. [DOI] [PubMed] [Google Scholar]
- 26.Tulis DA, Durante W, Peyton KJ, Evans AJ, Schafer AI. Heme oxygenase-1 attenuates vascular remodeling following balloon injury in rat carotid arteries. Atherosclerosis. 2001;155:113–22. doi: 10.1016/s0021-9150(00)00552-9. [DOI] [PubMed] [Google Scholar]
- 27.Duckers HJ, Boehm M, True AL, Yet S-F, Park JL, Webb RC, Lee M-E, Nabel GJ, Nebel EG. Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med. 2001;7:693–8. doi: 10.1038/89068. [DOI] [PubMed] [Google Scholar]
- 28.Tulis DA, Durante W, Liu X. Evan AJ, Peyton KJ, Schafer AI. Adenovirus-mediated heme oxygenase-1 gene delivery inhibits injury-induced vascular neoinitima formation. Circulation. 2001;104:2710–5. doi: 10.1161/hc4701.099585. [DOI] [PubMed] [Google Scholar]
- 29.Exner M, Schillinger M, Minar E, Mlekush W, Schlerka G, Haumer M, Mannhalter C, Wagner O. Heme oxygenase-1 gene promoter microsatellite polymorphism is associated with restenosis after percutaneous transluminal angioplasty. Endovasc Ther. 2001;8:433–40. doi: 10.1177/152660280100800501. [DOI] [PubMed] [Google Scholar]
- 30.Chen Y-H, Chau L-Y, Lin M-W, Chen L-C, Yo M-H, Chen J-W, Lin S-J. Heme oxygenase-1 Promoter microsatellite polymorphism is associated with angiographic restenosis after coronary stenting. Eur Heart J. 2004;25:39–47. doi: 10.1016/j.ehj.2003.10.009. [DOI] [PubMed] [Google Scholar]
- 31.Tulis DA, Keswani AN, Peyton KJ, Wang H, Schafer AL, Durante W. Local administration of carbon monoxide inhibits neointima formation in balloon injured rat carotid arteries. Cell Mol Biol. 2005;51:441–6. [PMC free article] [PubMed] [Google Scholar]
- 32.Peyton KJ, Reyna SV, Chapman GB, Ensent D, Liu X, Wang H, Schafer AI, Durante W. Heme oxygenase-1 derived carbon monoside is an autocrine inhibitor of vascular smooth muscle cell growth. Blood. 2002;99:4443–8. doi: 10.1182/blood.v99.12.4443. [DOI] [PubMed] [Google Scholar]
- 33.Morita T, Mitsialis SA. Hoike H, Liu Y, Kourembanas S. Carbon monoxide controls the proliferation of hypoxic smooth muscle cells. J Biol Chem. 1997;272:32804–9. doi: 10.1074/jbc.272.52.32804. [DOI] [PubMed] [Google Scholar]
- 34.Taille C, El-Benna J, Lanone S, Boczkowski J, Motterlini R. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J Biol Chem. 2005;280:255350–60. doi: 10.1074/jbc.M503512200. [DOI] [PubMed] [Google Scholar]
- 35.Kim HP, Wang X, Nakao A, Kim SI, Murase N, Choi ME, Ruter SW, Choi AMK. Caveolin-1 Expression by means of p38 mitogen-activated protein kinase mediates the antiproliferative effect of carbon monoxide. Proc Natl Acad Sci USA. 2005;102:11319–24. doi: 10.1073/pnas.0501345102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Dulak J, Loboda A, Zagorska A, Jozkowitez A. Complex role of heme oxygenase-1 in angiogenesis. Antioxid Redox Signal. 2004;6:858–66. doi: 10.1089/ars.2004.6.858. [DOI] [PubMed] [Google Scholar]
- 37.Sunamura M, Duda DG, Ghattes MH, Lozonschi L, Motoi F, Yamauchi J, Shibahara S, Abraham NG. Heme oxygenase-1 accelerates tumar angiogenesis of human pancreatic cancer. Angiogenesis. 2003;6:15–24. doi: 10.1023/a:1025803600840. [DOI] [PubMed] [Google Scholar]
- 38.Suzuki M, Iso-o N, Takeshita S, Tsukamoto K, Mori I, Sato T, Ohno M, Nagai R, Ishizaka N. Facilitated angiogenesis induced by heme oxygenase-1 gene transfer in a rat model of hindlimb ischemia. Biochem Biophys Res Commun. 2003;302:138–43. doi: 10.1016/s0006-291x(03)00114-1. [DOI] [PubMed] [Google Scholar]
- 39.Jozkowicz A, HuK I, Nigisch A, Weigel G, Dietrich W, Motterlini R, Dulak J. Heme oxygenase and angiogenic activity of endothelial cells: stimulation by carbon monoxide and inhibition by tin protoporphyrin-IX. Antioxid Redox Signal. 2003;5:155–62. doi: 10.1089/152308603764816514. [DOI] [PubMed] [Google Scholar]
- 40.Li Volti G, Sacerdoti D, Sangras B, Banella A, Mezentsev A, Scapagnini G, Falck JR, Abraham NG. Carbon monoxide signaling in promoting angiogenesis in human microvessel endothelial cells. Antioxid Redox Signal. 2005;7:704–10. doi: 10.1089/ars.2005.7.704. [DOI] [PubMed] [Google Scholar]
- 41.Brouard S, Ottervein LE, Anrather J, Tobiasch E, Bach FH, Choi AM, Soares MP. Carbon monoxide generate4d by heme oxugenase 1 suppresses endothelial cell apoptosis. J Exp Med. 2000;192:1015–26. doi: 10.1084/jem.192.7.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Liu X, Chapman GB, Peyton KJ, Schafer AI, Durante W. Carbon Monoxide inhibits apoptosis in vascular smooth muscle cells. Cardiovasc Res. 2002;55:396–405. doi: 10.1016/s0008-6363(02)00410-8. [DOI] [PubMed] [Google Scholar]
- 43.Liu X, Peyton KJ, Ensenat D, Wang H, Schafer AI, Alam J, Durante W. Endoplasmic reticulum stress stimulates heme oxygenase-1 gene expression in vascular smooth muscle cells: role in cell survival. J Biol Chem. 2005;280:872–7. doi: 10.1074/jbc.M410413200. [DOI] [PubMed] [Google Scholar]
- 44.Zhang X, Shan P, Alam J, Davis RJ, Flavell RA, Lee PJ. Carbon monoxide modulates Fas/Fas ligand, caspases, and Bcl-2 family proteins via the p38a mitogen-activated protein kinase pathway during ischemia-reperfusion lung injury. J Biol Chem. 2003;278:22061–70. doi: 10.1074/jbc.M301858200. [DOI] [PubMed] [Google Scholar]
- 45.Kim HP, Wang X, Zhang J, Suh GY, Benjamin IJ, Ryter SW, Choi AM. Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38beta MAPK and heat shock factor-1. J Immunol. 2005;175:2622–9. doi: 10.4049/jimmunol.175.4.2622. [DOI] [PubMed] [Google Scholar]
- 46.Otterbein LE, Bach FH, Alam J, Soares MP, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Net Med. 2000;6:422–8. doi: 10.1038/74680. [DOI] [PubMed] [Google Scholar]
- 47.Song R, Ning W, Liu F, Ameredes BT, Calhoun WJ, Otterbein LE, Choi AMK. Regulation of IL-1β-induced GM-CSF production in human airway smooth muscle cells by carbon monoxide. Am J Physiol Lung Cell Mol Physiol. 2002;27:L50–6. doi: 10.1152/ajplung.00212.2002. [DOI] [PubMed] [Google Scholar]
- 48.Sowle P, Foresti R, Mann BE, Johnson TR, Green CJ, Motterlini R. Carbon monoxide releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolsaccharide in RAW264.7 murine macrophages. Br J Pharmacol. 2005;145:800–10. doi: 10.1038/sj.bjp.0706241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Morsiaki H, Katayama T, Kotaka Y, Ito M, Tamatani T, Sakamoto S, Ishimura Y, Takeda J, Suematsu M. Roles of carbon monoxide in leukocyte and platelet dynamics in rat mesentery during sevoflurane anesthesia. Anesthesiology. 2001;95:192–9. doi: 10.1097/00000542-200107000-00030. [DOI] [PubMed] [Google Scholar]
- 50.Vannacci A, Di Felice A, Giannini L, Marzocca C, Pierpaolo S, Zagli G, Masini E, Mannaioni PF. 2004. pp. S9–10. The effect of carbon monoxide releasing molocule on the immunological activation of guinea-pig mast cells and human basophils Inflamm Res. [DOI] [PubMed]
- 51.Brune B. Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by the activation of soluble guanylate cyclase. Mol Pharmacol. 1987;32:497–504. [PubMed] [Google Scholar]
- 52.Wagner CT, Durante W, Christodoulides N, Hellums JD, Schafer AL. Hemodynamic forces induce the expression of heme oxygenase in cultured vascular smooth muscle cells. J Clin Invest. 1997;100:589–96. doi: 10.1172/JCI119569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Peng L, Mundada L, Stomel JM, Liu JJ, Sun J, Yet SF, Fay WP. Induction of heme oxygenase-1 expression inhibits platelet-dependent thrombosis. Antioxid Redox Singal. 2004;6:687–90. doi: 10.1089/1523086041361677. [DOI] [PubMed] [Google Scholar]
- 54.Fujita T, Toda K, Karimova A, Yan S-F, Naka Y, Yet S-F, Pinsky DJ. Paradoxical Rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med. 2001;7:598–604. doi: 10.1038/87929. [DOI] [PubMed] [Google Scholar]
- 55.Thom SR, Fisher D, Xu YA, Notarfrancesco K, Ishiropoulos H. Adaptive responses and apoptosis in cells exposed to carbon monoxide. Proc Natl Acad Sci USA. 2000;97:1305–10. doi: 10.1073/pnas.97.3.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Clark JE, Foresti R, Sarathchandra P, Kaur H, Green CJ, Motterlini R. Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol Heart Circ Physiol. 2000;278:H643–51. doi: 10.1152/ajpheart.2000.278.2.H643. [DOI] [PubMed] [Google Scholar]
- 57.Hngiashi M, Ishizaka N, Aizawa T, Kurihara Y, Taguchi J, Nagai R, Kimura S, Ohno M. Induction of Heme oxygenase-1 can act protectively against cardiac ischemia/reperfusion in vivo. Biochem Biophys Res Commun. 2000;279:582–8. doi: 10.1006/bbrc.2000.3973. [DOI] [PubMed] [Google Scholar]
- 58.Masini E, Vannacci A, Marzocca C, Pierpaoli S, Giannini L, Fantappie O, Mazzanti R, Mannaioni PF. Heme oxygenase-1 and the ischemia-reperfusion injury in the rat heart. Exp Biol Med. 2003;228:546–9. doi: 10.1177/15353702-0322805-25. [DOI] [PubMed] [Google Scholar]
- 59.Yet S-F, Tiang R, Layne MD, Wang ZY, Maemura K, Solovyeva M, Ith B, Melo LG, Zhang L, Ingwall JS, Dzau VJ, Lee M-U, Perrella MA. Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res. 2001;89:168–73. doi: 10.1161/hh1401.093314. [DOI] [PubMed] [Google Scholar]
- 60.Vulapalli RS, Chen Z, Chua BHL, Wang Liang C-S. Cardioselective overexpression of HO-1 prevents cardiac Dysfunction and apoptosis. Am J Physiol Heart Circ Physiol. 2002;283:H688–94. doi: 10.1152/ajpheart.00133.2002. [DOI] [PubMed] [Google Scholar]
- 61.Yoshida T, Maulik N, Ho Y-S, Alam J, Das DK. Hmox-1 constitutes to effect antioxidant protection: a study with transgenic mice heterozyogus for targeted disruption of the heme oxygenase-1 gene. Circulation. 2001;103:1695–701. doi: 10.1161/01.cir.103.12.1695. [DOI] [PubMed] [Google Scholar]
- 62.Yet S-F, Perrella MA, Layne MD, Hsieh C-M, Maemura K, Kobzik L, Wiesel P, Christou H, Kourembanas S, Lee M-E. Hyposia induces severe right ventrucular dilatation and infarcation in heme oxygenase-1 null mice. J Clin Invest. 1999;103:R23–9. doi: 10.1172/JCI6163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Melo LG, Agrawal R, Zhang L, Rezvani M, Mangi AA, Ehsan A, Griese DP, Dell’Acqua G, Mann MJ, Oyama J, Yet S-F, Layne MD, Perrella MA, Dzau VJ. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation. 2002;105:602–7. doi: 10.1161/hc0502.103363. [DOI] [PubMed] [Google Scholar]
- 64.Liu X, Pachori AS, Ward CA, Davis JP, Gnecchi M, Kong D, Zhang L, Murduck J, Yet S-F, Perrella MA, Pratt RE, Dzau VJ, Melo LG. Heme oxygenase-1 (HO-1) inhibits postmyocardial infract remodeling and restores ventricular function. FASEB J. 2006;20:207–16. doi: 10.1096/fj.05-4435com. [DOI] [PubMed] [Google Scholar]
- 65.Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann BE, Foresti R, Motterlini R. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res. 2003;93:e2–8. doi: 10.1161/01.RES.0000084381.86567.08. [DOI] [PubMed] [Google Scholar]
- 66.Guo Y, Stein AB, Wu WJ, Tan W, Zhu X, Li QH, Dawn B, Motterlini R, Bolli R. Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. Am J Physiol Heart Circ Physiol. 2004;286:H1649–3. doi: 10.1152/ajpheart.00971.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Stein AB, Guo Y, Tan W, Wu WJ, Zhu X, LiQ Luo C, Dawn B, Johnson TR, Motterlini R, Bolli R. Administration of CO-releasing molecule induces late preconditioning against myocardial infarcation. J Mol Cell Cardiol. 2005;38:127–34. doi: 10.1016/j.yjmcc.2004.10.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Fujimoto H, Ohno M, Ayabe S, Kobayashi H, Ishizaka N, Kimura H, Yoshida K, Nagai R. Carbon monoxide protects against cardiac ischemia-reperfusion injury in vivo via MAPK and Akt-eNOS pathjways. Arterioscler Thromb Vasc Biol. 2004;24:1–7. doi: 10.1161/01.ATV.0000142364.85911.0e. [DOI] [PubMed] [Google Scholar]
- 69.Lavitrano M. Smolesnki RT, Musimeci A, Maccherini M, Slominska E, Di Florio E, Bracco A, Mancini A, Stassi G, Patti M, Giovannoni R, Froio A, Simeone F, Forni M, Bacci ML, D’Alise G, Cozzi E, Otterbein LE, Yacoub MH, Bach FH, Calise F. Carbon monoxide improves cardiac energetics and safeguards the heart during reperfusion after cardiopulmonary bypass in pigs. FASEB J. 2004;18:1093–5. doi: 10.1096/fj.03-0996fje. [DOI] [PubMed] [Google Scholar]
- 70.Akamatsu Y. Haga M. Tyagi S, Yamashita K, Graca-Sonuza AV, Ollinger R, Czismadia E, May GA, Ifedigbo E, Otterbein LE, Bach FH, Soares MP. Heme oxygenase-1-derived carbon monoxide protects hearts from transplant associated ischemic reperfusion injury. FASEB J. 2004;18:771–2. doi: 10.1096/fj.03-0921fje. [DOI] [PubMed] [Google Scholar]
- 71.Bak I, Varadi J, Nagy N, Vecsernyes M, Toski A. The roal of exogenous carbon monoxide in the recovery of post-ischemic cardiac function in buffer perfused isolated rat hearts. Cell Mol Biol. 2005;51:453–9. [PubMed] [Google Scholar]
- 72.Ndisang JF, Tabien HEN, Wang R. Carbon monoxide and Hypertension. J Hypertens. 2004;22:1057–74. doi: 10.1097/00004872-200406000-00002. [DOI] [PubMed] [Google Scholar]
- 73.Kharitonov VG, Sharma VS, Pilz RB, Magde D, Koesling Basis of Guanylate Cyclase Activation by carbon monoxide. Proc Natl Acad Sci USA. 1995;92:2568–71. doi: 10.1073/pnas.92.7.2568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Wang R, Wu L. The chemical modification of Kca Channels by Carbon monoxide in vascular smooth muscle cells. J Biol Chem. 1997;272:32804–9. doi: 10.1074/jbc.272.13.8222. [DOI] [PubMed] [Google Scholar]
- 75.Andreson JJ, Shafi NI, Durante W, Bryan Rm., Jr 2006. The effect of carbon monoxide and heme oxygenase inhibitors in cerebral vessels of rats and mice Am J Physiol Heart Circ Physiol ; DOL, 10.1152/ajpheart.00058.
- 76.Johnson FK, Johson RA. Carbon monoxide promotes endothelium-dependent constriction of isolated gracilis muscle arterioles. Am J Physiol Heart Circ Physiol. 2003;285:R536–41. doi: 10.1152/ajpregu.00624.2002. [DOI] [PubMed] [Google Scholar]
- 77.White KA, Marletta MA. Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry. 1992;31:6627–31. doi: 10.1021/bi00144a001. [DOI] [PubMed] [Google Scholar]
- 78.Thorup C, Jones CL, Gross SS, Moore LC, Goligorsky MS. Carbon Monoxide induces vasodilation and nitric oxide release by suppresses endothelial NOS. Am J Physiol Heart Circ Physiol. 1999;277:F882–9. doi: 10.1152/ajprenal.1999.277.6.F882. [DOI] [PubMed] [Google Scholar]
- 79.Ishikawa M, Kajimura M, Adachi T, Maruyama K, Makino N, Goda N, Yamaguchi T, Sekizuka E, Suematsu M. Carbon monoxide from heme oxygenase-2 is a tonic regulator against NO- dependent vasodilation in the adult rat cerebral microcirculation. Circ Res. 2005;97:e104–14. doi: 10.1161/01.RES.0000196681.34485.ec. [DOI] [PubMed] [Google Scholar]
- 80.Johnson RA, Lavesa M, Askari B, Abraham NG, Nasjletti A. A heme oxygenase product, presumably carbon monoxide, mediates a vasodepressor function in rats. Hypertension. 1996;25:166–9. doi: 10.1161/01.hyp.25.2.166. [DOI] [PubMed] [Google Scholar]
- 81.Johnson RA, Colombari E, Columbari DS, Lavesa M, Talman WT. Role of endogenous carbon monoxide in central regulation of arterial pressure. Hypertension. 1997;30:962–7. doi: 10.1161/01.hyp.30.4.962. [DOI] [PubMed] [Google Scholar]
- 82.Sacerdoti D, Escalante B, Abraham NG, McGiff JC, Levere RD, Schwartzman ML. Treatment with tin prevents the development of hyopertension in spontaneously hypertensive rats. Science. 1989;243:388–90. doi: 10.1126/science.2492116. [DOI] [PubMed] [Google Scholar]
- 83.Levere RD, Martasek P, Escalante B, Schwartzman ML, Abraham NG. Effect of heme arginate administration on blood pressure in spontaneously hypertensive rats. J Clin Invest. 1990;17:776–9. doi: 10.1172/JCI114686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Sabaawy HE, Zhang F, Nguyen X. Eihosseiny A, Nasjletti A, Schwartzman M, Dennery P, Kappas A, Abraham NG. Human heme oxygenase-1 gene transfer lowers blood pressure and prmotes growth in spontaneously hypertensive rats. Hypertension. 2001;38:210–5. doi: 10.1161/01.hyp.38.2.210. [DOI] [PubMed] [Google Scholar]
- 85.Ndisang JF, Wang R. Mechanisms underlying selective ragulation of blood pressure by HO-1 in hypertension. Hypertension. 2002;40:315–21. doi: 10.1161/01.hyp.0000028488.71068.16. [DOI] [PubMed] [Google Scholar]
- 86.Yang L, Quan S, Nasjletti A, Laniado-Schwartzman M, Abraham NG. Heme Oxygenase-1 expression modulates angiotensin II-induced increase in blood pressure. Hypertension. 2004;43:1–6. doi: 10.1161/01.HYP.0000126287.62060.e6. [DOI] [PubMed] [Google Scholar]
- 87.Wiesel P, Patel AP, Carvajal IM, Wang ZY, Pellacani A, Maemura K, DiFonzo N, Rennke HG, Layne MD, Yet S-F, Lee M-E, Perrella MA. Exacerbation of chronic renovascular hypertension and acute renal failure in heme oxygenase-1-deficient mice. Circ Res. 2001;88:1088–94. doi: 10.1161/hh1001.091521. [DOI] [PubMed] [Google Scholar]
- 88.Christou H, Morita T, Hasieh C-M, Koike H, Arkonac B, Perrella MA, Kourembanas S. Prevention of Hypox ia-induced pulmonary hyoertension by enhancement of endogenous heme oxygenase-1 in the rat. Circ Res. 2000;86:1224–9. doi: 10.1161/01.res.86.12.1224. [DOI] [PubMed] [Google Scholar]
- 89.Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Pettella MA, Mitsialis SA. Kourembanas S. Targeted Expression of heme oxygenase-1 Prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci USA. 2001;98:8798–803. doi: 10.1073/pnas.161272598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Yet S-F, Pellacani A, Patterson C, Tan L, Folta SC, Foster L, Lee WS, Hsieh C-M, Perrella MA. Induction of heme oxygenase-1 expression in vascular smooth muscle cells: a link to endotoxic Shock. J Biol Chem. 1997;272:4295–301. doi: 10.1074/jbc.272.7.4295. [DOI] [PubMed] [Google Scholar]
- 91.Wiesel P, Patel AP, DiFonzo N, Marria PB, Sim CU, Pellacani A, Maemura K, LeBlanc BW, Marino K, Doerschuk CM, Yet S-F, Lee M-U, Perrella MA. Endotoxin-induced mortality is related to increased oxida-tive stress and end-organ dysfunction, not refractory hypertension in heme oxygenase-1-deficient mice. Circulation. 2000;102:3015–22. doi: 10.1161/01.cir.102.24.3015. [DOI] [PubMed] [Google Scholar]
- 92.Mazzola S, Forni M, Albertini M, Bacci ML, Zannoni A, Gentilini F, Lavitrano M, Bach FH, Clement MG. Carbon monoxide pretreatment prevents regulatory derangement and ameliorates hyperacute endotoxic shock in pigs. FASEB J. 2005;19:2045–7. doi: 10.1096/fj.05-3782fje. [DOI] [PubMed] [Google Scholar]
- 93.Johnson FK, Durante W, Peyton KJ, Johnson RA. Heme oxygenase inhibitor restores arteriolar nitric oxide function in DAHL rats. Pertension. 2003;41:149–55. doi: 10.1161/01.hyp.0000046923.52222.58. [DOI] [PubMed] [Google Scholar]
- 94.Teran FJ, Johnson RA, Stevenson BK, Peyton KJ, Jackson KE, Appleton SD, Durante W, Johnson FK. Heme oxygenase-derived carbon monoxide promotes arteriolar endothelial dysfunction and contributes to salt-induced hypertension in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol. 2005;288:R615–22. doi: 10.1152/ajpregu.00123.2004. [DOI] [PubMed] [Google Scholar]
- 95.Johnson FK, Durante W, Peyton KJ, Johnson RA. Heme oxygenase-mediated endothelial dysfunction in DOCA-salt, but not in spontaneously hypertensive rat arterioles. Am J Physiol Heart Circ Physiol. 2004;286:H1681–7. doi: 10.1152/ajpheart.00409.2003. [DOI] [PubMed] [Google Scholar]
- 96.Johnson RA, Teran FJ, Durante W, Peyton KJ, Johnson FK. Enhanced heme oxygenase-mediated coro-nary vasodilation in Dahl salt-sensitive hypertension. Am J Hypertens. 2004;17:25–30. doi: 10.1016/j.amjhyper.2003.08.009. [DOI] [PubMed] [Google Scholar]
- 97.Johnson FK, Johnson RA, Durante W, Jackson KE, Stevenson BK, Peyton KJ. Metabolic syndrome increases endogenous carbon monoxide production to promote hypertension and endothelial dysfunction. Am J Physiol Regul Integr Comp Physiol. 2006;290:R601–8. doi: 10.1152/ajpregu.00308.2005. [DOI] [PubMed] [Google Scholar]
- 98.Paredi P, Biernacke W, Invernizzi G, Kharitinov SA, Barnes PJ. Exhaled carbon monoxide levels elevated in diabetes and correlated with glucose concentration in blood: a new test for monitoring the disease. Chest. 1999;116:1007–11. doi: 10.1378/chest.116.4.1007. [DOI] [PubMed] [Google Scholar]
- 99.Imai T, Morita T, Shindo T, Nagai R, Yazaki Y, Kurihara H, Suematsu M, Katayama S. Vascular smooth muscle cell-directed overexpression of heme oxy-genase-1 elevates blood pressure through attenuation of nitric oxide-induced vasodilation in mice. Cir Res. 2001;89:55–62. doi: 10.1161/hh1301.092679. [DOI] [PubMed] [Google Scholar]
- 100.Morita T, Kourembanas S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J Clin Invest. 1995;96:2676–82. doi: 10.1172/JCI118334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Johnson RA, Nguyen CV, Teran FJ, Johnson FK. Carbon monoxide decreases contractility of the paced Lagendorff-perfused heart. FASEB J. 2001;15:1139A. [Google Scholar]
- 102.Penney DG, Davidson SB, Gargulinski RB, Caldwell-Ayre TM. Heart and lung hypertrophy, changes in blood volume, hematocrit and plasma renin activity in rats chronically exposed to increasing carbon monoxide production. J Appl Toxic. 1988;8:171–8. doi: 10.1002/jat.2550080304. [DOI] [PubMed] [Google Scholar]
- 103.Morimoto Y, Durante W, Lancaster DG, Klattenhoff J, Tittel FK. Real-time measurements of endogenous CO production form vascular cells using an ultrasensitive laser sensor. Am J Physiol Heart Circ Physiol. 2001;280:H483–8. doi: 10.1152/ajpheart.2001.280.1.H483. [DOI] [PubMed] [Google Scholar]
- 104.Ogborne RM, Rushworth SA, Charalambos CA, O’Connell MA. Haem oxygenase-1: a target for dietary antioxidants. Biochem Soc Trans. 2004;32:1003–5. doi: 10.1042/BST0321003. [DOI] [PubMed] [Google Scholar]
- 105.Durante W, Johnson FK, Johnson RA. Targeting heme oxygenase-1 in the treatment of atherosclerosis. Drug Discovery Today. Therapeutic Strategies. 2005;2:201–6. [Google Scholar]
- 106.Stupfel M, Bouley G. Physiological and biochemical effects on rats and mice exposed to small concentrations of carbon monoxide for long periods. Ann NY Acad Sci. 1970;174:342–68. doi: 10.1111/j.1749-6632.1970.tb49799.x. [DOI] [PubMed] [Google Scholar]
- 107.Loennechen JP, Beisvag V, Arbo I, Waldum HL, Sandvik AK, Knardahl S, Ellingsen O. Chronic carbon monoxide exposure in vivo induces myocardial endothe-lin-1 expression and hypertrophy in rat. Pharmacol Toxicol. 1999;85:192–7. doi: 10.1111/j.1600-0773.1999.tb00091.x. [DOI] [PubMed] [Google Scholar]
- 108.Penney DG, Formolo JM. Carbon monoxide-induced cardiac hypertrophy is not reduced by alpha- or beta-blockade in the rat. Toxicology. 1993;80:173–87. doi: 10.1016/0300-483x(93)90179-v. [DOI] [PubMed] [Google Scholar]
- 109.Chauveau C, Bouchet D, Roussel JC, Mathieu P, Bradeau C, Renaudin K, Tesson L, Soulillou JP, Iyer S, Buelow R, Anegon I. Gene transfer of heme oxygenase-1 and carbon monoxide delivery inhibit chronic rejection. Am J Transplant. 2002;2:581–92. doi: 10.1034/j.1600-6143.2002.20702.x. [DOI] [PubMed] [Google Scholar]
- 110.Foresti R, Shurey C, Ansari T, Sibbons P, Mann BE, Johnson TR, Green CJ, Motterlini R. Reviewing the use of carbon monoxide-releasing molecules (CO-RMs) in biology: implications in endotoxin-mediated vascular dys-function. Cell Mol Biol (Noisy-le-grand) 2005;51:409–23. [PubMed] [Google Scholar]
- 111.Tulis DA. Salutary properties of YC-1 in the cardiovascular and hematological systems. Curr Med Chem Cardiovasc Hematol Agents. 2004;2:343–59. doi: 10.2174/1568016043356200. [DOI] [PubMed] [Google Scholar]
- 112.Quan S, Yang L, Abraham NG, Kappas A. Regulation of human heme oxygenase in endothelial cells by using sense and antisense retroviral constructs. Proc Natl Acad Sci USA. 2001;98:12203–8. doi: 10.1073/pnas.211399398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Deng YM, Wu BJ, Witting PK, Stocker R. Probucol protects against smooth muscle cell proliferation by upregulating heme oxygenase-1. Circulation. 2004;110:1855–60. doi: 10.1161/01.CIR.0000142610.10530.25. [DOI] [PubMed] [Google Scholar]
- 114.Vreman HJ, Wong RJ, Stevenson DK, Clark JD. 2002. Alzanstat: a novel heme oxygenase inhibitor. 2nd International Conference on Heme Oxygenase (HO/CO) and Cellular Stress Response. Catania, Italy. June 6-9,
- 115.Kinobe RT, Vlahakis JZ, Vreman HJ, Stevenson DK, Brien JF, Szarek WA, Nakatsu K. Selectivity of imidazole-dioxolane compounds for in vitro inhibition of microsomal haem oxygenase isoforms. Br J Pharmacol. 2006;147:307–15. doi: 10.1038/sj.bjp.0706555. [DOI] [PMC free article] [PubMed] [Google Scholar]