Abstract
Introduction: Biologic bone substitutes may offer alternatives to bone grafting procedures. The aim of this study was to evaluate a preformed bone substitute based on processed bovine cancellous bone (PBCB) with or without osteogenic cells in a critical size calvarial defect rat model. Methods: Discs of PBCB (Tutobone®) were seeded with second passage fibrin gel-immobilized syngenic osteoblasts (group A, n = 40). Cell-free matrices (group B, n = 28) and untreated defects (group C; n=28) served as controls. Specimens were explanted between day 0 and 4 months after implantation and were subjected to histological and morphometric evaluation. Results: At 1 month, bone formation was limited to small peripheral areas. At 2 and 4 months, significant bone formation, matrix resorption as well as integration of the implants was evident in groups A and B. In group C no significant regeneration of the defects was observed. Morphometric analysis did not disclose differences in bone formation in matrices from groups A and B. Carboxyfluorescine-Diacetate-Succinimidylester (CFDA) labeling demonstrated low survival rates of transplanted cells. Discussion: Osteoblasts seeded into PBCB matrix display a differentiated phenotype following a 14 days cell culture period. Lack of initial vascularization may explain the absence of added osteogenicity in constructs from group A in comparison to group B. PBCB is well integrated and represents even without osteogenic cells a promising biomaterial for reconstruction of critical size calvarial bone defects.
Keywords: bone tissue engineering, osteoconduction, osteointegration, osteoblast transplantation, processed bovine cancellous bone matrix
References
- 1.Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3:192–5. doi: 10.1097/00005131-198909000-00002. [DOI] [PubMed] [Google Scholar]
- 2.Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353–64. doi: 10.1016/s0142-9612(03)00339-9. [DOI] [PubMed] [Google Scholar]
- 3.McAuliffe JA. Bone graft substitutes. J Hand Ther. 2003;16:180–7. doi: 10.1016/s0894-1130(03)80013-3. [DOI] [PubMed] [Google Scholar]
- 4.Holy CE, Fialkov JA, Davies JE, Shoichet MS. Use of a biomimetic strategy to engineer bone. J Biomed Mater Res. 2003;65A:447–53. doi: 10.1002/jbm.a.10453. [DOI] [PubMed] [Google Scholar]
- 5.Knaack D, Goad ME, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Lee DD. Resorbable calcium phosphate bone substitute. J Biomed Mater Res. 1998;43:399–409. doi: 10.1002/(sici)1097-4636(199824)43:4<399::aid-jbm7>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
- 6.Behravesh E, Zygourakis K, Mikos AG. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide. J Biomed Mater Res. 2003;65A:260–70. doi: 10.1002/jbm.a.10461. [DOI] [PubMed] [Google Scholar]
- 7.Schantz JT, Hutmacher DW, Lam CX, Brinkmann M, Wong KM, Lim TC, Chou N, Guldberg RE, Teoh SH. Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng. 2003;9(Suppl 1):S127–39. doi: 10.1089/10763270360697030. [DOI] [PubMed] [Google Scholar]
- 8.Breitbart AS, Grande DA, Kessler R, Ryaby JT, Fitzsimmons RJ, Grant RT. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast Reconstr Surg. 1998;101:567–74. doi: 10.1097/00006534-199803000-00001. [DOI] [PubMed] [Google Scholar]
- 9.Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and. in vitro. Cell Transplant. 1997;6:125–34. doi: 10.1177/096368979700600206. [DOI] [PubMed] [Google Scholar]
- 10.Ohgushi H, Miyake J, Tateishi T. Mesenchymal stem cells and bioceramics: strategies to regenerate the skeleton. Novartis Found Symp. 2003;249:118–27. [PubMed] [Google Scholar]
- 11.Ignatius AA, Betz O, Augat P, Claes LE. In vivo investigations on composites made of resorbable ceramics and poly(lactide) used as bone graft substitutes. J Biomed Mater Res. 2001;58:701–9. doi: 10.1002/jbm.10024. [DOI] [PubMed] [Google Scholar]
- 12.Cornu O, Banse X, Docquier PL, Luyckx S, Delloye C. Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res. 2000;18:426–31. doi: 10.1002/jor.1100180314. [DOI] [PubMed] [Google Scholar]
- 13.Hofmann C, Schadel-Hopfner M, Berns T, Sitter H, Gotzen L. [Influence of processing and sterilization on the mechanical properties of pins made from bovine cortical bone] Unfallchirurg. 2003;106:478–82. doi: 10.1007/s00113-003-0611-z. [DOI] [PubMed] [Google Scholar]
- 14.Trentz OA, Hoerstrup SP, Sun LK, Bestmann L, Platz A, Trentz OL. Osteoblasts response to allogenic and xenogenic solvent dehydrated cancellous bone in vitro. Biomaterials. 2003;24:3417–26. doi: 10.1016/s0142-9612(03)00205-9. [DOI] [PubMed] [Google Scholar]
- 15.Stangenberg L, Schaefer DJ, Buettner O, Ohnolz J, Moebest D, Stark GB, Horch RE, Kneser U. Differentiation of osteoblasts in 3D culture in processed cancellous bone matrix: A quantitative analysis of gene expression based on real-time RT-PCR. Tissue Eng. 2005;11:855–64. doi: 10.1089/ten.2005.11.855. [DOI] [PubMed] [Google Scholar]
- 16.Schaefer DJ, Klemt C, Zhang XH, Stark GB. [Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration] Chirurg. 2000;71:1001–8. doi: 10.1007/s001040070002. [DOI] [PubMed] [Google Scholar]
- 17.Keith JD., Jr Localized ridge augmentation with a block allograft followed by secondary implant placement: a case report. Int J Periodontics Restorative Dent. 2004;24:11–7. [PubMed] [Google Scholar]
- 18.Cancedda R, Mastrogiacomo M, Bianchi G, Derubeis A, Muraglia A, Quarto R. Bone marrow stromal cells and their use in regenerating bone. Novartis Found Symp. 2003;249:133–43. [PubMed] [Google Scholar]
- 19.Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000;49:328–37. doi: 10.1002/(sici)1097-4636(20000305)49:3<328::aid-jbm5>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
- 20.Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue Engineering of Bone: the Reconstructive Surgeon’s Point of View. J Cell Mol Med. 2006;10:7–19. doi: 10.1111/j.1582-4934.2006.tb00287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H. Engineering bone: challenges and obstacles. J Cell Mol Med. 2005;9:72–84. doi: 10.1111/j.1582-4934.2005.tb00338.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Tabata Y. Tissue regeneration based on growth factor release. Tissue Eng. 2003;9:S5–15. doi: 10.1089/10763270360696941. [DOI] [PubMed] [Google Scholar]
- 23.Lisignoli G, Zini N, Remiddi G, Piacentini A, Puggioli A, Trimarchi C, Fini M, Maraldi NM, Facchini A. Basic fibroblast growth factor enhances in vitro mineralization of rat bone marrow stromal cells grown on nonwoven hyaluronic acid based polymer scaffold. Biomaterials. 2001;22:2095–105. doi: 10.1016/s0142-9612(00)00398-7. [DOI] [PubMed] [Google Scholar]
- 24.Kokubo S, Mochizuki M, Fukushima S, Ito T, Nozaki K, Iwai T, Takahashi K, Yokota S, Miyata K, Sasaki N. Long-term stability of bone tissues induced by an osteoinductive biomaterial, recombinant human bone morphogenetic protein-2 and a biodegradable carrier. Biomaterials. 2004;25:1795–803. doi: 10.1016/j.biomaterials.2003.08.030. [DOI] [PubMed] [Google Scholar]
- 25.Arnold U, Schweitzer S, Lindenhayn K, Perka C. Optimization of bone engineering by means of growth factors in a three-dimensional matrix. J Biomed Mater Res. 2003;67A:260–9. doi: 10.1002/jbm.a.10577. [DOI] [PubMed] [Google Scholar]
- 26.Cheng SL, Lou J, Wright NM, Lai CF, Avioli LV, Riew KD. In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene. Calcif Tissue Int. 2001;68:87–94. [PubMed] [Google Scholar]
- 27.Ohgushi H, Caplan AI. Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res. 1999;48:913–27. doi: 10.1002/(sici)1097-4636(1999)48:6<913::aid-jbm22>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
- 28.Schmitz JP, Schwartz Z, Hollinger JO, Boyan BD. Characterization of rat calvarial nonunion defects. Acta Anat (Basel) 1990;138:185–92. doi: 10.1159/000146937. [DOI] [PubMed] [Google Scholar]
- 29.Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 1988;254:317–30. doi: 10.1007/BF00225804. [DOI] [PubMed] [Google Scholar]
- 30.Mueller-Stahl K, Kofidis T, Akhyari P, Wachsmann B, Lenz A, Boublik J, Heine M, Muehlfait V, Haverich A, Mertsching H. Carboxyfluorescein diacetate succinimidyl ester facilitates cell tracing and colocalization studies in bioartificial organ engineering. Int J Artif Organs. 2003;26:235–40. doi: 10.1177/039139880302600309. [DOI] [PubMed] [Google Scholar]
- 31.Bensaid W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials. 2003;24:2497–502. doi: 10.1016/s0142-9612(02)00618-x. [DOI] [PubMed] [Google Scholar]
- 32.Tholpady SS, Schlosser R, Spotnitz W, Ogle RC, Lindsey WH. Repair of an osseous facial critical-size defect using augmented fibrin sealant. Laryngoscope. 1999;109:1585–8. doi: 10.1097/00005537-199910000-00007. [DOI] [PubMed] [Google Scholar]
- 33.Schmitz JP, Hollinger JO. 1986. pp. 299–308. The critical size defect as an experimental model for craniomandibulofacial nonunions Clin. Orthop. [PubMed]
- 34.Mauney JR, Jaquiery C, Volloch V, Heberer M, Martin I, Kaplan DL. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials. 2005;26:3173–85. doi: 10.1016/j.biomaterials.2004.08.020. [DOI] [PubMed] [Google Scholar]
- 35.Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med. 1973;138:745–53. doi: 10.1084/jem.138.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Peattie RA, Nayate AP, Firpo MA, Shelby J, Fisher RJ, Prestwich GD. Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials. 2004;25:2789–98. doi: 10.1016/j.biomaterials.2003.09.054. [DOI] [PubMed] [Google Scholar]
- 37.Wenger A, Stahl A, Weber H, Finkenzeller G, Augustin HG, Stark GB, Kneser U. Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng. 2004;10:1536–47. doi: 10.1089/ten.2004.10.1536. [DOI] [PubMed] [Google Scholar]
- 38.Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF) J Cell Mol Med. 2005;9:777–94. doi: 10.1111/j.1582-4934.2005.tb00379.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Khouri RK, Upton J, Shaw WW. Principles of flap prefabrication. Clin Plast Surg. 1992;19:763–71. [PubMed] [Google Scholar]
- 40.Tanaka Y, Sung KC, Tsutsumi A, Ohba S, Ueda K, Morrison WA. Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation. Plast Reconstr Surg. 2003;112:1636–44. doi: 10.1097/01.PRS.0000086140.49022.AB. [DOI] [PubMed] [Google Scholar]