Abstract
Objective: We have previously shown that monocytes/macrophages (MC/Mph) influence neovascularization by extracellular matrix degradation, and by direct incorporation into growing microvessels. To date, neither the phenotype of these cells, nor the stages of their capillary-like conversion were sufficiently characterized. Methods: We isolated mouse peritoneal Mph from transgenic mice expressing fluorescent proteins either ubiquitously, or specifically in the myelocytic lineage. These Mph were embedded in Matrigel which contained fluorescent protease substrates, exposed to an MCP-1 chemotactic gradient, and then examined by confocal microscopy after various intervals. Results: Within 3 hrs after gel embedding, we detected TIMP-1 and MMP-12 dependent proteolysis of the matrix surrounding Mph, mostly in the direction of high concentrations of MCP-1. After 2 days, Mph developed intracellular vacuoles containing degradation product. At 5 days these vacuoles were enlarged and/or fused to generate trans-cellular lumens in approximately 10% of cells or more (depending on animal’s genetic background). At this stage, Mph became tubular, and occasionally organized in three-dimensional structures resembling branched microvessels. Conclusion: Isolated mouse peritoneal Mph penetrate Matrigel and form tunnels via a metalloprotease-driven proteolysis and phagocytosis. Following a morphological adjustment driven by occurrence, enlargement and/or fusion process of intracellular vacuoles, similar to that described in bona fide endothelium, a subpopulation of these cells end up by lining a capillary-like lumen in vitro. Thus we show that adult Mph, not only the more primitive ‘endothelial progenitors’, have functional properties until now considered defining of the endothelial phenotype.
Keywords: monocytes/macrophages, endothelial, lumen formation, intracelular vacuole, functional adaptation
References
- 1.Fernandez PB, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML, Adamkiewicz J, Elsasser HP, Muller R, Havemann K. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation. 2000;65:287–300. doi: 10.1046/j.1432-0436.2000.6550287.x. [DOI] [PubMed] [Google Scholar]
- 2.Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, Strasser RH, Daniel WG. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res. 2001;49:671–80. doi: 10.1016/s0008-6363(00)00270-4. [DOI] [PubMed] [Google Scholar]
- 3.Gunsilius E, Petzer AL, Duba HC, Kahler CM, Gastl G. Circulating endothelial cells after transplantation. Lancet. 2001;357:1449–50. doi: 10.1016/S0140-6736(00)04605-5. [DOI] [PubMed] [Google Scholar]
- 4.Cebotari S, Walles T, Sorrentino S, Haverich A, Mertsching H. Guided tissue regeneration of vascular grafts in the peritoneal cavity. Circ Res. 2002;90:e71. doi: 10.1161/01.res.0000017729.02720.6f. [DOI] [PubMed] [Google Scholar]
- 5.Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res. 1999;85:1173–8. doi: 10.1161/01.res.85.12.1173. [DOI] [PubMed] [Google Scholar]
- 6.Chue WL, Campbell GR, Caplice N, Muhammed A, Berry CL, Thomas AC, Bennett MB, Campbell JH. Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts. J Vasc Surg. 2004;39:859–67. doi: 10.1016/j.jvs.2003.03.003. [DOI] [PubMed] [Google Scholar]
- 7.Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D’Amore PA, Stein-Streilein J, Losordo DW, Streilein JW. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest. 2005;115:2363–72. doi: 10.1172/JCI23874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Johnson C, Sung HJ, Lessner SM, Fini ME, Galis ZS. Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues: potential role in capillary branching. Circ Res. 2004;94:262–8. doi: 10.1161/01.RES.0000111527.42357.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Conejo-Garcia JR, Buckanovich RJ, Benencia F, Courreges MC, Rubin SC, Carroll RG, Coukos G. Vascular leukocytes contribute to tumor vascularization. Blood. 2005;105:679–81. doi: 10.1182/blood-2004-05-1906. [DOI] [PubMed] [Google Scholar]
- 10.Anghelina M, Krishnan P, Moldovan L, Moldovan NI. Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization. Stem Cells Dev. 2004;13:665–76. doi: 10.1089/scd.2004.13.665. [DOI] [PubMed] [Google Scholar]
- 11.Anghelina M, Krishnan P, Moldovan L, Moldovan NI. Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am J Pathol. 2006;168:529–41. doi: 10.2353/ajpath.2006.050255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Anghelina M, Moldovan L, Moldovan NI. Preferential activity of Tie2 promoter in arteriolar endothelium. J Cell Mol Med. 2005;9:113–21. doi: 10.1111/j.1582-4934.2005.tb00341.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Moldovan NI. Angiogenesis, l’enfant terrible of vascular biology is coming of age. J Cell Mol Med. 2005;9:775–6. doi: 10.1111/j.1582-4934.2005.tb00378.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett. 1997;407:313–9. doi: 10.1016/s0014-5793(97)00313-x. [DOI] [PubMed] [Google Scholar]
- 15.Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood. 2003;101:1155–63. doi: 10.1182/blood-2002-02-0569. [DOI] [PubMed] [Google Scholar]
- 16.Horino K, Kindezelskii AL, Elner VM, Hughes BA, Petty HR. Tumor cell invasion of model 3-dimensional matrices: demonstration of migratory pathways, collagen disruption, and intercellular cooperation. FASEB J. 2001;15:932–9. doi: 10.1096/fj.00-0392com. [DOI] [PubMed] [Google Scholar]
- 17.Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD. Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci USA. 1996;93:3942–6. doi: 10.1073/pnas.93.9.3942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Moldovan NI, Goldschmidt-Clermont PJ, Parker Thornburg J, Shapiro SD, Kolattukudy PE. Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res. 2000;87:378–84. doi: 10.1161/01.res.87.5.378. [DOI] [PubMed] [Google Scholar]
- 19.Anghelina M, Schmeisser A, Krishnan P, Moldovan L, Strasser RH, Moldovan NI. Migration of monocytes/macrophages in vitro and in vivo is accompanied by MMP12-dependent tunnel formation and by neovascularization. Cold Spring Harb Symp Quant Biol. 2002;67:209–15. doi: 10.1101/sqb.2002.67.209. [DOI] [PubMed] [Google Scholar]
- 20.Suomela S, Kariniemi AL, Snellman E, Saarialho-Kere U. Metalloelastase (MMP-12) and 92-kDa gelatinase (MMP-9) as well as their inhibitors, TIMP-1 and -3, are expressed in psoriatic lesions. Exp Dermatol. 2001;10:175–83. doi: 10.1034/j.1600-0625.2001.010003175.x. [DOI] [PubMed] [Google Scholar]
- 21.Gerritsen ME, Soriano R, Yang S, Zlot C, Ingle G, Toy K, Williams PM. Branching out: a molecular fingerprint of endothelial differentiation into tube-like structures generated by Affymetrix oligonucleotide arrays. Microcirculation. 2003;10:63–81. doi: 10.1038/sj.mn.7800170. [DOI] [PubMed] [Google Scholar]
- 22.Davis GE, Bayless KJ. An integrin and Rho GTPasedependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation. 2003;10:27–44. doi: 10.1038/sj.mn.7800175. [DOI] [PubMed] [Google Scholar]
- 23.Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature. 2006;442:453–6. doi: 10.1038/nature04923. [DOI] [PubMed] [Google Scholar]
- 24.Biermann H, Pietz B, Dreier R, Schmid KW, Sorg C, Sunderkotter C. Murine leukocytes with ring-shaped nuclei include granulocytes, monocytes, and their precursors. J Leukoc Biol. 1999;65:217–31. doi: 10.1002/jlb.65.2.217. [DOI] [PubMed] [Google Scholar]
- 25.Pels E, De Groot JW, Mullink R, Van Unnik JA, den Otter W. Identification of two different types of mouse peritoneal exudate cells with ring-shaped nuclei. J Reticuloendothel Soc. 1980;27:367–76. [PubMed] [Google Scholar]
- 26.Meyer GT, Matthias LJ, Noack L, Vadas MA, Gamble JR. Lumen formation during angiogenesis in vitro involves phagocytic activity, formation and secretion of vacuoles, cell death, and capillary tube remodelling by different populations of endothelial cells. Anat Rec. 1997;249:327–40. doi: 10.1002/(SICI)1097-0185(199711)249:3<327::AID-AR3>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- 27.Biswas SK, Sodhi A. In vitro activation of murine peritoneal macrophages of CD 11b, production of proniflammatory cytokines, and the signal transduction pathway. J.Interferon Cytokine Res. 2002;22:527–538. doi: 10.1089/10799900252982007. [DOI] [PubMed] [Google Scholar]
- 28.Egginton S, Gerritsen M. Lumen formation: in vivo versus in vitro observations. Microcirculation. 2003;10:45–61. doi: 10.1038/sj.mn.7800174. [DOI] [PubMed] [Google Scholar]
- 29.Fujiyama S, Amano K, Uehira K, Yoshida M, Nishiwaki Y, Nozawa Y, Jin D, Takai S, Miyazaki M, Egashira K, Imada T, Iwasaka T, Matsubara H. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res. 2003;93:980–9. doi: 10.1161/01.RES.0000099245.08637.CE. [DOI] [PubMed] [Google Scholar]
- 30.Moldovan NI. Functional adaptation: the key to plasticity of cardiovascular “stem” cells. Stem Cells Dev. 2005;14:111–21. doi: 10.1089/scd.2005.14.111. [DOI] [PubMed] [Google Scholar]
- 31.Havemann K, Pujol BF, Adamkiewicz J. In vitro transformation of monocytes and dendritic cells into endothelial like cells. Adv Exp Med Biol. 2003;522:47–57. doi: 10.1007/978-1-4615-0169-5_6. [DOI] [PubMed] [Google Scholar]