Abstract
The possibility of transmission of slow virus infection (HIV) and Creutzfeld-Jakob disease by cadaveric dura implants makes it necessary to find synthetic, absorbable materials for the reconstruction of the dura mater. Various procedures with autologous or alloplastic material are described. Four commerically available biomaterials were choosen to study the proliferation rate and the biocompatibility of human osteoblast-like cells (HOB-like cells) on 2-dimensional material by biochemical analysis. With a proliferation assay, the viability and the proliferation capacity of osteoblast-like cells were evaluated. A clinical trial was added to study resorbable fleece as one of the previously tested biomaterial in a small patient group (8 patients) to close anterior cranial fossa dura defects. The results of the proliferation assay showed the highest proliferation rate of HOB-like cells on resorbable fleece. All patients in our clinical trial with anterior cranial fossa dura defects were successfully treated with resorbable fleece. There was no evidence for persisting cerebrospinal fluid rhinorrhea or foreign body reaction after the period of wound healing. The present study demonstrated an excellent biocompatibility of resorbable fleece. The vicryl fleece is an alternative alloplastic material for endonasal closure of defined substantial defects of the dura with cerebrospinal fluid.
Keywords: biocompatibility, biomaterials, human osteoblast-like cells, proliferation assay, duraplasty, vicryl-PDS fleece, absorbable implants
References
- 1.Bibas AG, Skia B, Hickey SA. Transnasal endoscopic repair of cerebrospinal fluid rhinorhoea. Br J Neurosurg. 2001;14:49–52. doi: 10.1080/02688690042924. [DOI] [PubMed] [Google Scholar]
- 2.Burns JA, Dodson EE, Gross CW. Transnasal endoscopic repair of cranionasal fistulae: a refined technique with longterm follow-up. Laryngoscope. 1996;6:1080–3. doi: 10.1097/00005537-199609000-00007. [DOI] [PubMed] [Google Scholar]
- 3.Caroli E, Rocchi G, Salvati M, Delfini R. Duraplasty: our current experience. Surg Neurol. 2004;61:55–9. doi: 10.1016/s0090-3019(03)00524-x. [DOI] [PubMed] [Google Scholar]
- 4.Dandy WD. Pneumocephalus (intracranial pneumocele or aerocele) Arch Surg. 1926;12:949–82. [Google Scholar]
- 5.Hao SP. Transnasal endoscopic repair of cerebrospinal fluid rhinorrhea: an interposition technique. Laryngoscope. 1996;106:501–3. doi: 10.1097/00005537-199604000-00021. [DOI] [PubMed] [Google Scholar]
- 6.Schick B, Ibing R, Brors D, Draf W. Long-term study of endonasal Duraplasty and review of the literature. Ann Otol Rhinol Laryngol. 2001;110:142–7. doi: 10.1177/000348940111000209. [DOI] [PubMed] [Google Scholar]
- 7.Seidl RO, Todt I, Ernst A. Rekonstruktion von traumatischen Schädelbasisdefekten mit einem alloplastischen, resorbierbaren Vlies (Ethisorb) HNO. 2000;48:753–7. doi: 10.1007/s001060050654. [DOI] [PubMed] [Google Scholar]
- 8.Sittinger M, Bujia J, Rotter N, Reitzel D, Minuth WW, Burmester GR. Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques. Biomaterials. 1996;17:237–42. doi: 10.1016/0142-9612(96)85561-x. [DOI] [PubMed] [Google Scholar]
- 9.Verheggen R, Schulte-Baumann WJ, Hahm G, Lang J, Freudenthaler S, Schaake T, Markakis E. A new technique of dural closure-experience with Vicryl mesh. Acta Neurochir. (Wien) 1997;139:1074–9. doi: 10.1007/BF01411563. [DOI] [PubMed] [Google Scholar]
- 10.Stammberger H, Greistorfer K, Wolf G, Luxemberger W. Operativer Verschluβ von Liquorfisteln der vorderen Schädelbasis unter intrathekaler Natriumfluoreszein-Anwendung. Larnygorhinootologie. 1997;76:595–607. doi: 10.1055/s-2007-997487. [DOI] [PubMed] [Google Scholar]
- 11.Weber R, Keerl R, Draf W, Schick B, Mosler P, Saha A. Management of dural lesions occuring during endonasal sinus surgery. Arch Otolaryngol Head Neck Surg. 1996;122:732–6. doi: 10.1001/archotol.1996.01890190028008. [DOI] [PubMed] [Google Scholar]
- 12.Dalby MJ, Silvio LD, Harper EJ, Bonfield W. Initial interaction of osteoblasts with the surface of a hydroxyapatite- poly(methylmethacrylate) cement. Biomaterials. 2001;22:1739–47. doi: 10.1016/s0142-9612(00)00334-3. [DOI] [PubMed] [Google Scholar]
- 13.Fini M, Giavaresi G, Aldini NN, Torricelli P, Botter R, Beruto D, Giardino R. A bone substitute composed of polymethylmethacrylate and α-tricalcium phosphate: results in terms of osteoblast function and bone tissue for mation. Biomaterials. 2002;23:4523–31. doi: 10.1016/s0142-9612(02)00196-5. [DOI] [PubMed] [Google Scholar]
- 14.McFarland CD, Mayer S, Scotchford C, Dalton BA, Steele JG, Downes S. Attachment of cultured human bone cells to novel polymer. J Biomed Mater Res. 1999;44:1–11. doi: 10.1002/(sici)1097-4636(199901)44:1<1::aid-jbm1>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
- 15.Puleo D, Kay CD, Bizios R. Current challenges in cell-biomaterial interactions. Preface Biomaterials. 1999;20:2201. [Google Scholar]
- 16.Mouney JR, Blumberg J, Pirun M, Vladomer V, Vunjak-Novakovic G, Kaplan DL. Osteogenic differentiation of human bone marrow stromal cells on partially demineralized bone scaffolds. in vitro. Tissue Eng. 2004;10:81–92. doi: 10.1089/107632704322791727. [DOI] [PubMed] [Google Scholar]
- 17.Hirsch O. Successful closure of cerebrospinal fluid rhinorrhea by endonasal surgery. Arch Otolaryngol. 1952;56:1–13. doi: 10.1001/archotol.1952.00710020018001. [DOI] [PubMed] [Google Scholar]
- 18.Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H. Engineering bone: challenges and obstacles. J Cell Mol Med. 2005;9:72–84. doi: 10.1111/j.1582-4934.2005.tb00338.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Hillmann G, Steinkamp-Zucht A, Geurtsen W, Gross G, Hoffmann A. Culture of primary human gingival fibroblast on biodegradable membranes. Biomaterials. 2002;23:1461–9. doi: 10.1016/s0142-9612(01)00270-8. [DOI] [PubMed] [Google Scholar]
- 20.Yahya A, Terheyden H, Dunsche A, Fleiner B, Jepsen S. Three - dimensional cultivation of human osteoblast-like cells on highly porous natural bone mineral. J Biomed Mater Res. 2000;51:703–10. doi: 10.1002/1097-4636(20000915)51:4<703::aid-jbm19>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
- 21.Ogata K, Imazato S, Ehara A, Ebisu S, Kinomoto Y, Nakano T, Umakoshi Comparison of osteoblast responses to hydroxyapatite and hydroxyapatite/soluble calcium phosphate composites. J Biomed Mater Res. 2005;72:127–35. doi: 10.1002/jbm.a.30146. [DOI] [PubMed] [Google Scholar]
- 22.Haisch A, Schultz O, Perka C, Jahnke V, Burmester GR, Sittinger M. Tissue-engineering humanen Knorpelgewebes fuer die rekonstruktive Chirurgie unter Verwendung biocompatibler resorbierbarer Fibringel- and Polymervliesstrukturen. HNO. 1996;44:624–9. doi: 10.1007/s001060050067. [DOI] [PubMed] [Google Scholar]
- 23.Neovius EB, Kratz G. Tissue engineering by cocultivating human elastic chondrocytes and keratinocytes. Tissue Eng. 2003;9:365–9. doi: 10.1089/107632703764664837. [DOI] [PubMed] [Google Scholar]
- 24.Horch RE, Kopp J, Kneser U, Beier J, Bach AD. Tissue engineering of cultured skin substitutes. J Cell Mol Med. 2005;9:592–608. doi: 10.1111/j.1582-4934.2005.tb00491.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Perka C, Schultz O, Spitzer R, Lindenhayn K, Burmester GR, Sittinger M. Segmental bone repair by tissue engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffold in rabbits. Biomaterials. 2000;21:1145–53. doi: 10.1016/s0142-9612(99)00280-x. [DOI] [PubMed] [Google Scholar]
- 26.Barbolt TA, Odin M, Leger M, Kangas L, Hoiste J, Liu SH. Biocompatibility evaluation of dura mater substitutes in an animal model. Neurol Res. 2001;23:813–20. doi: 10.1179/016164101101199405. [DOI] [PubMed] [Google Scholar]
- 27.von Wild KR. Examination of the safety and efficacy of an absorbable dura mater substitute (Dura Patch) in normal applications in neurosurgery. Surg Neurol. 1999;52:418–25. doi: 10.1016/s0090-3019(99)00125-1. [DOI] [PubMed] [Google Scholar]
- 28.Wolf G, Plinkert PK, Schick B. Cell transplantation for a CSF-fistula. Experience with fibrin glue and fibroblasts. HNO. 2005;53:439–45. doi: 10.1007/s00106-004-1156-3. [DOI] [PubMed] [Google Scholar]
- 29.Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med. 2006;10:7–19. doi: 10.1111/j.1582-4934.2006.tb00287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Bach AD, Beier JP, Stern-Straeter J, Horch RE. Skeletal muscle tissue engineering. J Cell Mol Med. 2004;8:413–22. doi: 10.1111/j.1582-4934.2004.tb00466.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
