Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;10(3):770–777. doi: 10.1111/j.1582-4934.2006.tb00436.x

Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit

Christina Allmeling 1,*, Andreas Jokuszies 1, Kerstin Reimers 1, Susanne Kall 1, Peter M Vogt 1
PMCID: PMC3933158  PMID: 16989736

Abstract

Defects of peripheral nerves still represent a challenge for surgical nerve reconstruction. Recent studies concentrated on replacement by artificial nerve conduits from different synthetic or biological materials. In our study, we describe for the first time the use of spider silk fibres as a new material in nerve tissue engineering. Schwann cells (SC) were cultivated on spider silk fibres. Cells adhered quickly on the fibres compared to polydioxanone monofilaments (PDS). SC survival and proliferation was normal in Live/Dead assays. The silk fibres were ensheathed completely with cells. We developed composite nerve grafts of acellularized veins, spider silk fibres and SC diluted in matrigel. These artificial nerve grafts could be cultivated in vitro for one week. Histological analysis showed that the cells were vital and formed distinct columns along the silk fibres. In conclusion, our results show that artificial nerve grafts can be constructed successfully from spider silk, acellularized veins and SC mixed with matrigel.

Keywords: spider silk, Schwann cell, biocompatibility, nerve tissue engineering, nerve regeneration, nerve guide

References

  • 1.Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials. 2003;24:401–16. doi: 10.1016/s0142-9612(02)00353-8. [DOI] [PubMed] [Google Scholar]
  • 2.Bader A, Steinhoff G, Strobl K, Schilling T, Brandes G, Mertsching H, Tsikas D, Froelich J, Haverich A. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation. 2000;70:7–14. [PubMed] [Google Scholar]
  • 3.Bini TB, Gao S, Wang S, Ramakrishna S. Development of fibrous biodegradable polymer conduits for guided nerve regeneration. J Mater Sci Mater Med. 2005;16:367–75. doi: 10.1007/s10856-005-0637-6. [DOI] [PubMed] [Google Scholar]
  • 4.Bryan DJ, Tang JB, Holway AH, Rieger-Christ KM, Trantolo DJ, Wise DL, Summerhayes IC. Enhanced peripheral nerve regeneration elicited by cell-mediated events delivered via a bioresorbable PLGA guide. J Reconstr Microsurg. 2003;19:125–34. doi: 10.1055/s-2003-37820. [DOI] [PubMed] [Google Scholar]
  • 5.Chang CJ, Hsu SH. The effect of high outflow permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. Biomaterials. 2006;27:1035–42. doi: 10.1016/j.biomaterials.2005.07.003. [DOI] [PubMed] [Google Scholar]
  • 6.Cheng B, Chen Z. Fabricating autologous tissue to engineer artificial nerve. Microsurgery. 2002;22:133–7. doi: 10.1002/micr.21740. [DOI] [PubMed] [Google Scholar]
  • 7.Chiu DT, Lovelace RE, Yu LT, Wolff M, Stengel S, Middleton L, Janecka IP, Krizek TJ. Comparative electrophysiologic evaluation of nerve grafts and autogenous vein grafts as nerve conduits: an experimental study. J Reconstr Microsurg. 1988;4:303–2. doi: 10.1055/s-2007-1006936. [DOI] [PubMed] [Google Scholar]
  • 8.Chiu DT, Strauch B. A prospective clinical evaluation of autogenous vein grafts used as a nerve conduit for distal sensory nerve defects of 3 cm or less. Plast Reconstr Surg. 1990;86:928–34. doi: 10.1097/00006534-199011000-00015. [DOI] [PubMed] [Google Scholar]
  • 9.Dahlin LB, Lundborg G. Use of tubes in peripheral nerve repair. Neurosurg Clin N Am. 2001;12:341–52. [PubMed] [Google Scholar]
  • 10.Danielsson PA, Adolfsson L, Dahlin LB. Different effect on axonal outgrowth of application of non-absorbable or absorbable tubes around a nerve repair. Scand J Plast Reconstr Surg Hand Surg. 2001;35:347–53. doi: 10.1080/028443101317149309. [DOI] [PubMed] [Google Scholar]
  • 11.Evans GR, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi RK, Lu L, Mikos AG, Patrick CW., Jr Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials. 2002;23:841–8. doi: 10.1016/s0142-9612(01)00190-9. [DOI] [PubMed] [Google Scholar]
  • 12.Fansa H, Keilhoff G. Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects. Neurol Res. 2004;26:167–73. doi: 10.1179/016164104225013842. [DOI] [PubMed] [Google Scholar]
  • 13.Fansa H, Keilhoff G, Wolf G, Schneider W. Tissue engineering of peripheral nerves: A comparison of venous and acellular muscle grafts with cultured Schwann cells. Plast Reconstr Surg. 2001;107:485–94. doi: 10.1097/00006534-200102000-00026. [DOI] [PubMed] [Google Scholar]
  • 14.Fansa H, Schneider W, Wolf G, Keilhoff G. Host responses after acellular muscle basal lamina allografting used as a matrix for tissue engineered nerve grafts l. Transplantation. 2002;74:381–7. doi: 10.1097/00007890-200208150-00015. [DOI] [PubMed] [Google Scholar]
  • 15.Hinman MB, Jones JA, Lewis RV. Synthetic spider silk: a modular fiber. Trends Biotechnol. 2000;18:374–9. doi: 10.1016/s0167-7799(00)01481-5. [DOI] [PubMed] [Google Scholar]
  • 16.Ide C. Peripheral nerve regeneration. Neurosci Res. 1996;25:101–21. doi: 10.1016/0168-0102(96)01042-5. [DOI] [PubMed] [Google Scholar]
  • 17.Ignatius AA, Claes LE. In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide) Biomaterials. 1996;17:831–9. doi: 10.1016/0142-9612(96)81421-9. [DOI] [PubMed] [Google Scholar]
  • 18.Martin D, Schoenen J, Delree P, Leprince P, Rogister B, Moonen G. Grafts of syngenic cultured, adult dorsal root ganglion-derived Schwann cells to the injured spinal cord of adult rats: preliminary morphological studies. Neurosci Lett. 1991;124:44–8. doi: 10.1016/0304-3940(91)90818-e. [DOI] [PubMed] [Google Scholar]
  • 19.Martini R. Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. J Neurocytol. 1994;23:1–28. doi: 10.1007/BF01189813. [DOI] [PubMed] [Google Scholar]
  • 20.Mello CM, Soares JW, Arcidiacono S, Butler MM. Acid extraction and purification of recombinant spider silk proteins. Biomacromolecules. 2004;5:1849–52. doi: 10.1021/bm049815g. [DOI] [PubMed] [Google Scholar]
  • 21.Mirsky R, Stewart HJ, Tabernero A, Bradke F, Brennan A, Dong Z, Jessen KR. Development and differentiation of Schwann cells. Rev Neurol (Paris) 1996;152:308–13. [PubMed] [Google Scholar]
  • 22.Radtke C, Akiyama Y, Lankford KL, Vogt PM, Krause DS, Kocsis JD. Integration of engrafted Schwann cells into injured peripheral nerve: axonal association and nodal formation on regenerated axons. Neurosci Lett. 2005;387:85–9. doi: 10.1016/j.neulet.2005.06.073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Rutkowski GE, Heath CA. Development of a bioartificial nerve graft. II. Nerve regeneration in vitro. Biotechnol Prog. 2002;18:373–9. doi: 10.1021/bp020280h. [DOI] [PubMed] [Google Scholar]
  • 24.Scheller J, Henggeler D, Viviani A, Conrad U. Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res. 2004;13:51–7. doi: 10.1023/b:trag.0000017175.78809.7a. [DOI] [PubMed] [Google Scholar]
  • 25.Shen ZL, Berger A, Hierner R, Allmeling C, Ungewickell E, Walter GF. A Schwann cell-seeded intrinsic framework and its satisfactory biocompatibility for a bioartificial nerve graft. Microsurgery. 2001;21:6–11. doi: 10.1002/1098-2752(2001)21:1<6::aid-micr1001>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  • 26.Sponner A, Schlott B, Vollrath F, Unger E, Grosse F, Weisshart K. Characterization of the protein components of Nephila clavipes dragline silk. Biochemistry. 2005;44:4727–36. doi: 10.1021/bi047671k. [DOI] [PubMed] [Google Scholar]
  • 27.Strauch B, Rodriguez DM, Diaz J, Yu HL, Kaplan G, Weinstein DE. Autologous Schwann cells drive regeneration through a 6-cm autogenous venous nerve conduit. J Reconstr. Microsurg. 2001;17:589–95. doi: 10.1055/s-2001-18812. [DOI] [PubMed] [Google Scholar]
  • 28.Sundback CA, Shyu JY, Wang Y, Faquin WC, Langer RS, Vacanti JP, Hadlock TA. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials. 2005;26:5454–64. doi: 10.1016/j.biomaterials.2005.02.004. [DOI] [PubMed] [Google Scholar]
  • 29.Vollrath F, Barth P, Basedow A, Engstrom W, List H. Local tolerance to spider silks and protein polymers in vivo. In Vivo. 2002;16:229–34. [PubMed] [Google Scholar]
  • 30.Wong P. Foo C, Kaplan DL. Genetic engineering of fibrous proteins: spider dragline silk and collagen. Adv Drug Deliv Rev. 2002;54:1131–43. doi: 10.1016/s0169-409x(02)00061-3. [DOI] [PubMed] [Google Scholar]
  • 31.Yuan Y, Zhang P, Yang Y, Wang X, Gu X. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials. 2004;25:4273–8. doi: 10.1016/j.biomaterials.2003.11.029. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES