Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jan;80(1):115–119. doi: 10.1073/pnas.80.1.115

Internal triplication in the structure of human ceruloplasmin.

N Takahashi, R A Bauman, T L Ortel, F E Dwulet, C C Wang, F W Putnam
PMCID: PMC393320  PMID: 6571985

Abstract

Amino acid sequence analysis of the 67,000-dalton (67-kDal) fragment that is the amino-terminal half of human ceruloplasmin has revealed internal triplication in the primary structure of the entire molecule. This is illustrated by comparison of 620 residues representing homologous domains of the 67-kDal fragment and of the 50-kDal and 19-kDal fragments that together comprise the carboxyl-terminal half of the molecule. The polypeptide chain is divided into three covalently linked homologous segments, each of about 340 residues. All three homology units have about 30% identity in sequence, and each pair exhibits at least 40% identity. The statistical significance of the 3-fold internal duplication was established by computerized analysis of the sequence. These results and studies of the sites of limited proteolytic cleavage support a model for the ceruloplasmin molecule consisting of an alternating structure of six domains of two different kinds (or possibly nine domains of three kinds). The 3-fold internal homology suggests that the ceruloplasmin molecule evolved by tandem triplication of ancestral genes.

Full text

PDF
115

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman E. T., Stenkamp R. E., Sieker L. C., Jensen L. H. A crystallographic model for azurin a 3 A resolution. J Mol Biol. 1978 Jul 25;123(1):35–47. doi: 10.1016/0022-2836(78)90375-3. [DOI] [PubMed] [Google Scholar]
  2. Doolittle R. F. Similar amino acid sequences: chance or common ancestry? Science. 1981 Oct 9;214(4517):149–159. doi: 10.1126/science.7280687. [DOI] [PubMed] [Google Scholar]
  3. Dwulet F. E., Putnam F. W. Complete amino acid sequence of a 50,000-dalton fragment of human ceruloplasmin. Proc Natl Acad Sci U S A. 1981 Feb;78(2):790–794. doi: 10.1073/pnas.78.2.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dwulet F. E., Putnam F. W. Internal duplication and evolution of human ceruloplasmin. Proc Natl Acad Sci U S A. 1981 May;78(5):2805–2809. doi: 10.1073/pnas.78.5.2805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kingston I. B., Kingston B. L., Putnam F. W. Chemical evidence that proteolytic cleavage causes the heterogeneity present in human ceruloplasmin preparations. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5377–5381. doi: 10.1073/pnas.74.12.5377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kingston I. B., Kingston B. L., Putnam F. W. Complete amino acid sequence of a histidine-rich proteolytic fragment of human ceruloplasmin. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1668–1672. doi: 10.1073/pnas.76.4.1668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kingston I. B., Kingston B. L., Putnam F. W. Primary structure of a histidine-rich proteolytic fragment of human ceruloplasmin. II. Amino acid sequence of the tryptic peptides. J Biol Chem. 1980 Apr 10;255(7):2886–2896. [PubMed] [Google Scholar]
  8. Moshkov K. A., Lakatos S., Hajdu J., Závodsky P., Neifakh S. A. Proteolysis of human ceruloplasmin. Some peptide bonds are particularly susceptible to proteolytic attack. Eur J Biochem. 1979 Feb 15;94(1):127–134. doi: 10.1111/j.1432-1033.1979.tb12879.x. [DOI] [PubMed] [Google Scholar]
  9. Noyer M., Dwulet F. E., Hao Y. L., Putnam F. W. Purification and characterization of undegraded human ceruloplasmin. Anal Biochem. 1980 Mar 1;102(2):450–458. doi: 10.1016/0003-2697(80)90181-5. [DOI] [PubMed] [Google Scholar]
  10. Pickart L., Freedman J. H., Loker W. J., Peisach J., Perkins C. M., Stenkamp R. E., Weinstein B. Growth-modulating plasma tripeptide may function by facilitating copper uptake into cells. Nature. 1980 Dec 25;288(5792):715–717. doi: 10.1038/288715a0. [DOI] [PubMed] [Google Scholar]
  11. Prozorovski V. N., Rashkovetski L. G., Shavlovski M. M., Vasiliev V. B., Neifakh S. A. Evidence that human ceruloplasmin molecule consists of homologous parts. Int J Pept Protein Res. 1982 Jan;19(1):40–53. doi: 10.1111/j.1399-3011.1982.tb03021.x. [DOI] [PubMed] [Google Scholar]
  12. Richardson J., Thomas K. A., Rubin B. H., Richardson D. C. Crystal structure of bovine Cu,Zn superoxide dismutase at 3 A resolution: chain tracing and metal ligands. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1349–1353. doi: 10.1073/pnas.72.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rydén L., Eaker D. The amino-acid sequences of three tryptic glycopeptides from human ceruloplasmin. Eur J Biochem. 1974 May 2;44(1):171–180. doi: 10.1111/j.1432-1033.1974.tb03470.x. [DOI] [PubMed] [Google Scholar]
  14. Rydén L., Norder H. Covalent chromatography as a means of isolating thiol peptides from large proteins: application to human ceruloplasmin. J Chromatogr. 1981 Oct 23;215:341–350. doi: 10.1016/s0021-9673(00)81413-2. [DOI] [PubMed] [Google Scholar]
  15. Rydén L. Single-chain structure of human ceruloplasmin. Eur J Biochem. 1972 Apr 11;26(3):380–386. doi: 10.1111/j.1432-1033.1972.tb01777.x. [DOI] [PubMed] [Google Scholar]
  16. Samsonidze T. G., Moshkov K. A., Kiselev N. A., Neifakh S. A. Electron microscope study on human ceruloplasmin. Int J Pept Protein Res. 1979 Aug;14(2):161–168. doi: 10.1111/j.1399-3011.1979.tb01739.x. [DOI] [PubMed] [Google Scholar]
  17. Tetaert D., Takahashi N., Putman F. W. Purification of glycopeptides of human ceruloplasmin and immunoglobulin D by high-pressure liquid chromatography. Anal Biochem. 1982 Jul 1;123(2):430–437. doi: 10.1016/0003-2697(82)90468-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES