Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 May 14;93(10):4655–4660. doi: 10.1073/pnas.93.10.4655

A circadian clock regulates rod and cone input to fish retinal cone horizontal cells.

Y Wang 1, S C Mangel 1
PMCID: PMC39334  PMID: 8643459

Abstract

In the vertebrate retina, the light responses of post-receptor neurons depend on the ambient or background illumination. Using intracellular recording, we have found that a circadian clock regulates the light responses of dark-adapted fish cone horizontal cells. Goldfish were maintained on a 12-hr light/12-hr dark cycle. At different times of the day or night, retinas were superfused in darkness for 90 min ("prolonged darkness"), following which horizontal cells were impaled without the aid of any light flashes. In some of the experiments, fish were kept in constant darkness for 3-48 hr prior to surgery. After prolonged darkness during the night, but not during the day, the light responses of L-type cone horizontal cells resembled those of rod horizontal cells with respect to threshold, waveform, intensity-response functions, and spectral sensitivity. Following light sensitization during the night and day, the light responses of rod and cone horizontal cells were clearly different with respect to threshold, waveform, intensity-response functions, and spectral sensitivity. Under conditions of constant darkness for two full light/dark cycles, average responses of cone horizontal cells to a bright light stimulus during the subjective day were greater than during the subjective night. Prior reversal of the light/dark cycle reversed the 24-hr rhythm of cone horizontal cell responses to bright lights. In addition, following one full cycle of constant darkness, average cone horizontal cell spectral sensitivity during the subjective night closely matched that of rod horizontal cells, whereas average cone horizontal cell spectral sensitivity during the subjective day was similar to that of red (625 nm) cones. These results indicate that the effects of dark adaptation depend on the time of day and are regulated by a circadian clock so that cone input to cone horizontal cells predominates in the day and rod input predominates in the night.

Full text

PDF
4655

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARLOW H. B., FITZHUGH R., KUFFLER S. W. Change of organization in the receptive fields of the cat's retina during dark adaptation. J Physiol. 1957 Aug 6;137(3):338–354. doi: 10.1113/jphysiol.1957.sp005817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldridge W. H., Weiler R., Dowling J. E. Dark-suppression and light-sensitization of horizontal cell responses in the hybrid bass retina. Vis Neurosci. 1995 Jul-Aug;12(4):611–620. doi: 10.1017/s0952523800008907. [DOI] [PubMed] [Google Scholar]
  3. Bassi C. J., Powers M. K. Circadian rhythm in goldfish visual sensitivity. Invest Ophthalmol Vis Sci. 1987 Nov;28(11):1811–1815. [PubMed] [Google Scholar]
  4. Besharse J. C., Iuvone P. M. Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature. 1983 Sep 8;305(5930):133–135. doi: 10.1038/305133a0. [DOI] [PubMed] [Google Scholar]
  5. Birch D. G., Berson E. L., Sandberg M. A. Diurnal rhythm in the human rod ERG. Invest Ophthalmol Vis Sci. 1984 Feb;25(2):236–238. [PubMed] [Google Scholar]
  6. Douglas R. H., Wagner H. J. Endogenous patterns of photomechanical movements in teleosts and their relation to activity rhythms. Cell Tissue Res. 1982;226(1):133–144. doi: 10.1007/BF00217088. [DOI] [PubMed] [Google Scholar]
  7. Flannery J. G., Fisher S. K. Circadian disc shedding in Xenopus retina in vitro. Invest Ophthalmol Vis Sci. 1984 Feb;25(2):229–232. [PubMed] [Google Scholar]
  8. Guenther E., Zrenner E. The spectral sensitivity of dark- and light-adapted cat retinal ganglion cells. J Neurosci. 1993 Apr;13(4):1543–1550. doi: 10.1523/JNEUROSCI.13-04-01543.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harsanyi K., Mangel S. C. Modulation of cone to horizontal cell transmission by calcium and pH in the fish retina. Vis Neurosci. 1993 Jan-Feb;10(1):81–91. doi: 10.1017/s0952523800003242. [DOI] [PubMed] [Google Scholar]
  10. Hárosi F. I., MacNichol E. F., Jr Visual pigments of goldfish cones. Spectral properties and dichroism. J Gen Physiol. 1974 Mar;63(3):279–304. doi: 10.1085/jgp.63.3.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kolbinger W., Kohler K., Oetting H., Weiler R. Endogenous dopamine and cyclic events in the fish retina, I: HPLC assay of total content, release, and metabolic turnover during different light/dark cycles. Vis Neurosci. 1990 Aug;5(2):143–149. doi: 10.1017/s0952523800000183. [DOI] [PubMed] [Google Scholar]
  12. Korenbrot J. I., Fernald R. D. Circadian rhythm and light regulate opsin mRNA in rod photoreceptors. Nature. 1989 Feb 2;337(6206):454–457. doi: 10.1038/337454a0. [DOI] [PubMed] [Google Scholar]
  13. Lagnado L., Baylor D. Signal flow in visual transduction. Neuron. 1992 Jun;8(6):995–1002. doi: 10.1016/0896-6273(92)90122-t. [DOI] [PubMed] [Google Scholar]
  14. Mangel S. C. Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. J Physiol. 1991 Oct;442:211–234. doi: 10.1113/jphysiol.1991.sp018790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mangel S. C., Ariel M., Dowling J. E. Effects of acidic amino acid antagonists upon the spectral properties of carp horizontal cells: circuitry of the outer retina. J Neurosci. 1985 Nov;5(11):2839–2850. doi: 10.1523/JNEUROSCI.05-11-02839.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mangel S. C., Baldridge W. H., Weiler R., Dowling J. E. Threshold and chromatic sensitivity changes in fish cone horizontal cells following prolonged darkness. Brain Res. 1994 Oct 3;659(1-2):55–61. doi: 10.1016/0006-8993(94)90862-1. [DOI] [PubMed] [Google Scholar]
  17. Mangel S. C., Dowling J. E. Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science. 1985 Sep 13;229(4718):1107–1109. doi: 10.1126/science.4035351. [DOI] [PubMed] [Google Scholar]
  18. Mangel S. C., Dowling J. E. The interplexiform-horizontal cell system of the fish retina: effects of dopamine, light stimulation and time in the dark. Proc R Soc Lond B Biol Sci. 1987 Jun 22;231(1262):91–121. doi: 10.1098/rspb.1987.0037. [DOI] [PubMed] [Google Scholar]
  19. McCormack C. A., Burnside B. Light and circadian modulation of teleost retinal tyrosine hydroxylase activity. Invest Ophthalmol Vis Sci. 1993 Apr;34(5):1853–1860. [PubMed] [Google Scholar]
  20. Naka K. I., Nye P. W. Role of horizontal cells in organization of the catfish retinal receptive field. J Neurophysiol. 1971 Sep;34(5):785–801. doi: 10.1152/jn.1971.34.5.785. [DOI] [PubMed] [Google Scholar]
  21. Naka K. I., Rushton W. A. An attempt to analyse colour reception by electrophysiology. J Physiol. 1966 Aug;185(3):556–586. doi: 10.1113/jphysiol.1966.sp008002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nussdorf J. D., Powers M. K. Spectral sensitivity of the electroretinogram b-wave in dark-adapted goldfish. Vis Neurosci. 1988;1(2):159–168. doi: 10.1017/s0952523800001437. [DOI] [PubMed] [Google Scholar]
  23. Raynauld J. P., Laviolette J. R., Wagner H. J. Goldfish retina: a correlate between cone activity and morphology of the horizontal cell in clone pedicules. Science. 1979 Jun 29;204(4400):1436–1438. doi: 10.1126/science.451577. [DOI] [PubMed] [Google Scholar]
  24. Remé C. E., Wirz-Justice A., Terman M. The visual input stage of the mammalian circadian pacemaking system: I. Is there a clock in the mammalian eye? J Biol Rhythms. 1991 Spring;6(1):5–29. doi: 10.1177/074873049100600104. [DOI] [PubMed] [Google Scholar]
  25. Schwanzara S. A. The visual pigments of freshwater fishes. Vision Res. 1967 Mar;7(3):121–148. doi: 10.1016/0042-6989(67)90079-x. [DOI] [PubMed] [Google Scholar]
  26. Stell W. K. The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. Am J Anat. 1967 Sep;121(2):401–423. doi: 10.1002/aja.1001210213. [DOI] [PubMed] [Google Scholar]
  27. Tornqvist K., Yang X. L., Dowling J. E. Modulation of cone horizontal cell activity in the teleost fish retina. III. Effects of prolonged darkness and dopamine on electrical coupling between horizontal cells. J Neurosci. 1988 Jul;8(7):2279–2288. doi: 10.1523/JNEUROSCI.08-07-02279.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Toyoda J. I., Tonosaki K. Effect of polarisation of horizontal cells on the on-centre bipolar cell of carp retina. Nature. 1978 Nov 23;276(5686):399–400. doi: 10.1038/276399a0. [DOI] [PubMed] [Google Scholar]
  29. Witkovsky P., Shakib M., Ripps H. Interreceptoral junctions in the teleost retina. Invest Ophthalmol. 1974 Dec;13(12):996–1009. [PubMed] [Google Scholar]
  30. Witkovsky P., Stone S., Besharse J. C. Dopamine modifies the balance of rod and cone inputs to horizontal cells of the Xenopus retina. Brain Res. 1988 May 24;449(1-2):332–336. doi: 10.1016/0006-8993(88)91048-7. [DOI] [PubMed] [Google Scholar]
  31. Yang X. L., Wu S. M. Modulation of rod-cone coupling by light. Science. 1989 Apr 21;244(4902):352–354. doi: 10.1126/science.2711185. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES