Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jan;80(2):329–333. doi: 10.1073/pnas.80.2.329

Characterization of a calmodulin-binding protein that is deficient in trifluoperazine-resistant variants of the macrophage-like cell line J774.

M G Speaker, S J Orlow, T W Sturgill, O M Rosen
PMCID: PMC393370  PMID: 6572895

Abstract

A calmodulin-binding protein is present in extracts of the macrophage-like mouse cell line J774 and in extracts of thioglycollate-stimulated mouse peritoneal macrophages; it is deficient in variants of J774 resistant to trifluoperazine and in resident peritoneal macrophages. The calmodulin-binding protein [CaMBP (J7)0.5] was purified from J774 and resolved from endogenous cyclic nucleotide phosphodiesterase and protein kinase activities. The protein has an apparent native Mr of 125,000-150,000 and binds calmodulin in a calcium-dependent manner with a Kd of 20 nM. It inhibits the ability of calmodulin to activate phosphodiesterase. Its sedimentation constant in glycerol gradients containing calmodulin was dependent upon the relative concentrations of calmodulin and the calmodulin-binding protein.

Full text

PDF
329

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barthélemy A., Paridaens R., Schell-Frederick E. Phagocytosis-induced 45calcium efflux in polymorphonuclear leucocytes. FEBS Lett. 1977 Oct 15;82(2):283–287. doi: 10.1016/0014-5793(77)80603-0. [DOI] [PubMed] [Google Scholar]
  2. Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
  3. Gallin J. I., Rosenthal A. S. The regulatory role of divalent cations in human granulocyte chemotaxis. Evidence for an association between calcium exchanges and microtubule assembly. J Cell Biol. 1974 Sep;62(3):594–609. doi: 10.1083/jcb.62.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hathaway D. R., Adelstein R. S. Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1653–1657. doi: 10.1073/pnas.76.4.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Horwitz S. B., Chia G. H., Harracksingh C., Orlow S., Pifko-Hirst S., Schneck J., Sorbara L., Speaker M., Wilk E. W., Rosen O. M. Trifluoperazine inhibits phagocytosis in a macrophagelike cultured cell line. J Cell Biol. 1981 Dec;91(3 Pt 1):798–802. doi: 10.1083/jcb.91.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kakiuchi S., Sobue K., Kanda K., Morimoto K. Purification of a 155 000 Mr calmodulin-binding protein from a microsomal fraction of brain. FEBS Lett. 1982 Feb 22;138(2):173–177. doi: 10.1016/0014-5793(82)80434-1. [DOI] [PubMed] [Google Scholar]
  7. Klee C. B., Crouch T. H., Krinks M. H. Subunit structure and catalytic properties of bovine brain Ca2+-dependent cyclic nucleotide phosphodiesterase. Biochemistry. 1979 Feb 20;18(4):722–729. doi: 10.1021/bi00571a026. [DOI] [PubMed] [Google Scholar]
  8. Klee C. B., Crouch T. H., Richman P. G. Calmodulin. Annu Rev Biochem. 1980;49:489–515. doi: 10.1146/annurev.bi.49.070180.002421. [DOI] [PubMed] [Google Scholar]
  9. LaPorte D. C., Storm D. R. Detection of calcium-dependent regulatory protein binding components using 125I-labeled calcium-dependent regulatory protein. J Biol Chem. 1978 May 25;253(10):3374–3377. [PubMed] [Google Scholar]
  10. Larsen F. L., Vincenzi F. F. Calcium transport across the plasma membrane: stimulation by calmodulin. Science. 1979 Apr 20;204(4390):306–309. doi: 10.1126/science.155309. [DOI] [PubMed] [Google Scholar]
  11. Levin R. M., Weiss B. Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol. 1977 Jul;13(4):690–697. [PubMed] [Google Scholar]
  12. Lew P. D., Stossel T. P. Calcium transport by macrophage plasma membranes. J Biol Chem. 1980 Jun 25;255(12):5841–5846. [PubMed] [Google Scholar]
  13. Means A. R. Calmodulin: properties, intracellular localization, and multiple roles in cell regulation. Recent Prog Horm Res. 1981;37:333–367. doi: 10.1016/b978-0-12-571137-1.50011-6. [DOI] [PubMed] [Google Scholar]
  14. Nicolson G. L., Smith J. R., Poste G. Effects of local anesthetics on cell morphology and membrane-associated cytoskeletal organization in BALB/3T3 cells. J Cell Biol. 1976 Feb;68(2):395–402. doi: 10.1083/jcb.68.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pershadsingh H. A., Landt M., McDonald J. M. Calmodulin-sensitive ATP-dependent Ca2+ transport across adipocyte plasma membranes. J Biol Chem. 1980 Oct 10;255(19):8983–8986. [PubMed] [Google Scholar]
  16. Rosen N., Piscitello J., Schneck J., Muschel R. J., Bloom B. R., Rosen O. M. Properties of protein kinase and adenylate cyclase-deficient variants of a macrophage-like cell line. J Cell Physiol. 1979 Jan;98(1):125–136. doi: 10.1002/jcp.1040980114. [DOI] [PubMed] [Google Scholar]
  17. Sharma R. K., Desai R., Waisman D. M., Wang J. H. Purification and subunit structure of bovine brain modulator binding protein. J Biol Chem. 1979 May 25;254(10):4276–4282. [PubMed] [Google Scholar]
  18. Sobieszek A. Ca-linked phosphorylation of a light chain of vertebrate smooth-muscle myosin. Eur J Biochem. 1977 Mar 1;73(2):477–483. doi: 10.1111/j.1432-1033.1977.tb11340.x. [DOI] [PubMed] [Google Scholar]
  19. Sobue K., Morimoto K., Kanda K., Maruyama K., Kakiuchi S. Reconstitution of Ca2+-sensitive gelation of actin filaments with filamin, caldesmon and calmodulin. FEBS Lett. 1982 Feb 22;138(2):289–292. doi: 10.1016/0014-5793(82)80463-8. [DOI] [PubMed] [Google Scholar]
  20. Sobue K., Muramoto Y., Fujita M., Kakiuchi S. Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5652–5655. doi: 10.1073/pnas.78.9.5652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Speaker M. G., Sturgill T. W., Orlow S. J., Chia G. H., Pifko-Hirst S., Rosen O. M. The effects of trifluoperazine on the macrophage-like cell line, J774. Ann N Y Acad Sci. 1980;356:162–178. doi: 10.1111/j.1749-6632.1980.tb29609.x. [DOI] [PubMed] [Google Scholar]
  22. Stoclet J. C. An ubiquitous protein which regulates calcium-dependent cellular functions and calcium movements. Biochem Pharmacol. 1981 Jul 1;30(13):1723–1729. doi: 10.1016/0006-2952(81)90001-0. [DOI] [PubMed] [Google Scholar]
  23. Stossel T. P. Quantitative studies of phagocytosis. Kinetic effects of cations and heat-labile opsonin. J Cell Biol. 1973 Aug;58(2):346–356. doi: 10.1083/jcb.58.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. White G. C., 2nd, Raynor S. T. The effects of trifluoperazine, an inhibitor of calmodulin, on platelet function. Thromb Res. 1980 Apr 1;18(1-2):279–284. doi: 10.1016/0049-3848(80)90194-2. [DOI] [PubMed] [Google Scholar]
  25. Yerna M. J., Dabrowska R., Hartshorne D. J., Goldman R. D. Calcium-sensitive regulation of actin-myosin interactions in baby hamster kidney (BHK-21) cells. Proc Natl Acad Sci U S A. 1979 Jan;76(1):184–188. doi: 10.1073/pnas.76.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES