Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Feb;80(3):835–839. doi: 10.1073/pnas.80.3.835

Receptor for transferrin may be a "target" structure for natural killer cells.

L Vodinelich, R Sutherland, C Schneider, R Newman, M Greaves
PMCID: PMC393475  PMID: 6298777

Abstract

Human transferrin receptors detected by monoclonal antibody OKT9 appear to be well expressed on cell types known to provide sensitive targets for natural killer (NK) cells. The possibility that transferrin receptors are recognized by NK effector cells has been investigated by three series of experiments: (i) analysis of the correlation between sensitivity to natural killing and the proportion of transferrin receptor-positive cells in different cell lines, (ii) study of the relationship between levels of transferrin receptor expression in cell lines and their capacity to competitively inhibit recognition and killing of the target cell K562 by NK cells, and (iii) comparison of affinity-purified soluble proteolytic fragments of the transferrin receptor and HLA-A, -B molecules for their ability to inhibit the natural killing effect. The data indicate that the transferrin receptor can provide a "target" structure for NK cells. Because transferrin receptors are ubiquitously expressed on normal and malignant proliferating cells, these observations have interesting implications for the possible function of NK cells in vivo.

Full text

PDF
835

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahrlund-Richter L., Klein E., Masucci G. Somatic hybrids between a high NK-sensitive lymphoid (YACIR) and several low sensitive sarcoma or L-cell-derived mouse lines exhibit low sensitivity. Somatic Cell Genet. 1980 Jan;6(1):89–99. doi: 10.1007/BF01538698. [DOI] [PubMed] [Google Scholar]
  2. Becker S., Stendahl O., Magnusson K. E. Physico-chemical characteristics of tumour cells susceptible to lysis by natural killer (NK) cells. Immunol Commun. 1979;8(1):73–83. doi: 10.3109/08820137909044708. [DOI] [PubMed] [Google Scholar]
  3. Brodsky F. M., Parham P., Barnstable C. J., Crumpton M. J., Bodmer W. F. Monoclonal antibodies for analysis of the HLA system. Immunol Rev. 1979;47:3–61. doi: 10.1111/j.1600-065x.1979.tb00288.x. [DOI] [PubMed] [Google Scholar]
  4. Brooks C. G., Wayner E. A., Webb P. J., Gray J. D., Kenwrick S., Baldwin R. W. The specificity of rat natural killer cells and cytotoxic macrophages on solid tumor-derived target cells and selected variants. J Immunol. 1981 Dec;127(6):2477–2483. [PubMed] [Google Scholar]
  5. Clark E. A., Sturge J. C. Phylogeny of NK cell reactivity against human and nonhuman primate lymphoblastoid cell lines: evolving and conserved target antigens. J Immunol. 1981 Mar;126(3):969–974. [PubMed] [Google Scholar]
  6. Collins S. J., Ruscetti F. W., Gallagher R. E., Gallo R. C. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci U S A. 1978 May;75(5):2458–2462. doi: 10.1073/pnas.75.5.2458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gidlund M., Orn A., Pattengale P. K., Jansson M., Wigzell H., Nilsson K. Natural killer cells kill tumour cells at a given stage of differentiation. Nature. 1981 Aug 27;292(5826):848–850. doi: 10.1038/292848a0. [DOI] [PubMed] [Google Scholar]
  8. Greaves M. F., Delia D., Robinson J., Sutherland R., Newman R. Exploitation of monoclonal antibodies: a "who's who" of haemopoietic malignancy. Blood Cells. 1981;7(2):257–280. [PubMed] [Google Scholar]
  9. Hale A. H., Evans D. L., McGee M. P. H-2 antigens incorporated into phospholipid vesicles interact specifically with allogeneic cytotoxic T lymphocytes. Cell Immunol. 1981 Sep 1;63(1):42–56. doi: 10.1016/0008-8749(81)90027-7. [DOI] [PubMed] [Google Scholar]
  10. Haller O., Hansson M., Kiessling R., Wigzell H. Role of non-conventional natural killer cells in resistance against syngeneic tumour cells in vivo. Nature. 1977 Dec 15;270(5638):609–611. doi: 10.1038/270609a0. [DOI] [PubMed] [Google Scholar]
  11. Haller O., Kiessling R., Orn A., Kärre K., Nilsson K., Wigzell H. Natural cytotoxicity to human leukemia mediated by mouse non-T cells. Int J Cancer. 1977 Jul 15;20(1):93–103. doi: 10.1002/ijc.2910200116. [DOI] [PubMed] [Google Scholar]
  12. Hansson M., Kiessling R., Andersson B. Human fetal thymus and bone marrow contain target cells for natural killer cells. Eur J Immunol. 1981 Jan;11(1):8–12. doi: 10.1002/eji.1830110103. [DOI] [PubMed] [Google Scholar]
  13. Hansson M., Kiessling R., Andersson B., Kärre K., Roder J. NK cell-sensitive T-cell subpopulation in thymus: inverse correlation to host NK activity. Nature. 1979 Mar 8;278(5700):174–176. doi: 10.1038/278174a0. [DOI] [PubMed] [Google Scholar]
  14. Hansson M., Kärre K., Kiessling R., Roder J., Andersson B., Häyry P. Natural NK-cell targets in the mouse thymus: characteristics of the sensitive cell population. J Immunol. 1979 Aug;123(2):765–771. [PubMed] [Google Scholar]
  15. Herberman R. B., Holden H. T. Natural cell-mediated immunity. Adv Cancer Res. 1978;27:305–377. doi: 10.1016/s0065-230x(08)60936-7. [DOI] [PubMed] [Google Scholar]
  16. Herberman R. B., Nunn M. E., Lavrin D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer. 1975 Aug 15;16(2):216–229. doi: 10.1002/ijc.2910160204. [DOI] [PubMed] [Google Scholar]
  17. Hudig D., Djobadze M., Redelman D., Mendelsohn J. Active tumor cell resistance to human natural killer lymphocyte attack. Cancer Res. 1981 Jul;41(7):2803–2808. [PubMed] [Google Scholar]
  18. Hutchings S. E., Sato G. H. Growth and maintenance of HeLa cells in serum-free medium supplemented with hormones. Proc Natl Acad Sci U S A. 1978 Feb;75(2):901–904. doi: 10.1073/pnas.75.2.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kiessling R., Hochman P. S., Haller O., Shearer G. M., Wigzell H., Cudkowicz G. Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts. Eur J Immunol. 1977 Sep;7(9):655–663. doi: 10.1002/eji.1830070915. [DOI] [PubMed] [Google Scholar]
  20. Minowada J., Janossy G., Greaves M. F., Tsubota T., Srivastava B. I., Morikawa S., Tatsumi E. Expression of an antigen associated with acute lymphoblastic leukemia in human leukemia-lymphoma cell lines. J Natl Cancer Inst. 1978 Jun;60(6):1269–1277. doi: 10.1093/jnci/60.6.1269. [DOI] [PubMed] [Google Scholar]
  21. Ortaldo J. R., Oldham R. K., Cannon G. C., Herberman R. B. Specificity of natural cytotoxic reactivity of normal human lymphocytes against a myeloid leukemia cell line. J Natl Cancer Inst. 1977 Jul;59(1):77–82. doi: 10.1093/jnci/59.1.77. [DOI] [PubMed] [Google Scholar]
  22. Riccardi C., Santoni A., Barlozzari T., Herberman R. B. In vivo reactivity of mouse natural killer (NK) cells against normal bone marrow cells. Cell Immunol. 1981 May 1;60(1):136–143. doi: 10.1016/0008-8749(81)90254-9. [DOI] [PubMed] [Google Scholar]
  23. Roder J. C., Ahrlund-Richter L., Jondal M. Target-effector interaction in the human and murine natural killer system: specificity and xenogeneic reactivity of the solubilized natural killer-target structure complex and its loss in a somatic cell hybrid. J Exp Med. 1979 Sep 19;150(3):471–481. doi: 10.1084/jem.150.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roder J. C., Rosén A., Fenyö E. M., Troy F. A. Target-effector interaction in the natural killer cell system: isolation of target structures. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1405–1409. doi: 10.1073/pnas.76.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rosenberg E. B., McCoy J. L., Green S. S., Donnelly F. C., Siwarski D. F., Levine P. H., Herberman R. B. Destruction of human lymphoid tissue-culture cell lines by human peripheral lymphocytes in 51Cr-release cellular cytotoxicity assays. J Natl Cancer Inst. 1974 Feb;52(2):345–352. doi: 10.1093/jnci/52.2.345. [DOI] [PubMed] [Google Scholar]
  26. Schneider C., Newman R. A., Sutherland D. R., Asser U., Greaves M. F. A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem. 1982 Sep 25;257(18):10766–10769. [PubMed] [Google Scholar]
  27. Sieff C., Bicknell D., Caine G., Robinson J., Lam G., Greaves M. F. Changes in cell surface antigen expression during hemopoietic differentiation. Blood. 1982 Sep;60(3):703–713. [PubMed] [Google Scholar]
  28. Sutherland R., Delia D., Schneider C., Newman R., Kemshead J., Greaves M. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4515–4519. doi: 10.1073/pnas.78.7.4515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Trowbridge I. S., Omary M. B. Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin. Proc Natl Acad Sci U S A. 1981 May;78(5):3039–3043. doi: 10.1073/pnas.78.5.3039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Welsh R. M., Karre K., Hansson M., Kunkel L. A., Kiessling R. W. Interferon-mediated protection of normal and tumor target cells against lysis by mouse natural killer cells. J Immunol. 1981 Jan;126(1):219–225. [PubMed] [Google Scholar]
  31. Young W. W., Jr, Durdik J. M., Urdal D., Hakomori S., Henney C. S. Glycolipid expression in lymphoma cell variants: chemical quantity, immunologic reactivity, and correlations with susceptibility to NK cells. J Immunol. 1981 Jan;126(1):1–6. [PubMed] [Google Scholar]
  32. Zarling J. M., Clouse K. A., Biddison W. E., Kung P. C. Phenotypes of human natural killer cell populations detected with monoclonal antibodies. J Immunol. 1981 Dec;127(6):2575–2580. [PubMed] [Google Scholar]
  33. Zaunders J., Werkmeister J., McCarthy W. H., Hersey P. Characterization of antigens recognized by natural killer cells in cell-culture supernatants. Br J Cancer. 1981 Jan;43(1):5–12. doi: 10.1038/bjc.1981.2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES