Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Mar;80(5):1285–1289. doi: 10.1073/pnas.80.5.1285

alpha-Radiation dose at bronchial bifurcations of smokers from indoor exposure to radon progeny.

E A Martell
PMCID: PMC393580  PMID: 6572389

Abstract

Synergistic interactions of indoor radon progeny with the cigarette smoking process have been evaluated experimentally. Smoking enhances the air concentration of submicron particles and attached radon decay products. Fractionation in burning cigarettes gives rise to the association of radon progeny with large particles in mainstream cigarette smoke, which are selectively deposited in "hot spots" at bronchial bifurcations. Because smoke tars are resistant to dissolution in lung fluid, attached radon progeny undergo substantial radioactive decay at bifurcations before clearance. Radon progeny inhaled during normal breathing between cigarettes make an even larger contribution to the alpha-radiation dose at bifurcations. Progressive chemical and radiation damage to the epithelium at bifurcations gives rise to prolonged retention of insoluble 210Pb-enriched smoke particles produced by tobacco trichome combustion. The high incidence of lung cancer in cigarette smokers is attributed to the cumulative alpha-radiation dose at bifurcations from indoor radon and thoron progeny--218Po, 214Po, 212Po, and 212Bi--plus that from 210Po in 210Pb-enriched smoke particles. It is estimated that a carcinogenic alpha-radiation dose of 80-100 rads (1 rad = 0.01 J/kg = 0.01 Gy) is delivered to approximately equal to 10(7) cells (approximately equal to 10(6) cells at individual bifurcations) of most smokers who die of lung cancer.

Full text

PDF
1285

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AUERBACH O., STOUT A. P., HAMMOND E. C., GARFINKEL L. Changes in bronchial epithelium in relation to cigarette smoking and in relation to lung cancer. N Engl J Med. 1961 Aug 10;265:253–267. doi: 10.1056/NEJM196108102650601. [DOI] [PubMed] [Google Scholar]
  2. Albert R. E., Lippmann M., Briscoe W. The characteristics of bronchial clearance in humans and the effects of cigarette smoking. Arch Environ Health. 1969 May;18(5):738–755. doi: 10.1080/00039896.1969.10665482. [DOI] [PubMed] [Google Scholar]
  3. BRUES A. M. Ionizing radiations and cancer. Adv Cancer Res. 1954;2:177–195. doi: 10.1016/s0065-230x(08)60494-7. [DOI] [PubMed] [Google Scholar]
  4. Brandom W. F., Saccomanno G., Archer V. E., Archer P. G., Bloom A. D. Chromosome aberrations as a biological dose-response indicator of radiation exposure in uranium miners. Radiat Res. 1978 Oct;76(1):159–171. [PubMed] [Google Scholar]
  5. CRIDER W. L., MILBURN R. H., MORTON S. D. The retention of hygroscopic dusts in the human lungs. AMA Arch Ind Health. 1957 Jan;15(1):59–62. [PubMed] [Google Scholar]
  6. ERMALA P., HOLSTI L. R. Distribution and absorption of tobacco tar in the organs of the respiratory tract. Cancer. 1955 Jul-Aug;8(4):673–678. doi: 10.1002/1097-0142(1955)8:4<673::aid-cncr2820080404>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  7. Evans R. D., Harley J. H., Jacobi W., McLean A. S., Mills W. A., Stewart C. G. Estimate of risk from environmental exposure to radon-222 and its decay products. Nature. 1981 Mar 12;290(5802):98–100. doi: 10.1038/290098a0. [DOI] [PubMed] [Google Scholar]
  8. Gore D. J., Patrick G. The distribution and clearance of inhaled UO2 particles on the first bifurcation and trachea of rats. Phys Med Biol. 1978 Jul;23(4):730–737. doi: 10.1088/0031-9155/23/4/014. [DOI] [PubMed] [Google Scholar]
  9. Harley N. H., Pasternack B. S. A model for predicting lung cancer risks induced by environmental levels of radon daughters. Health Phys. 1981 Mar;40(3):307–316. doi: 10.1097/00004032-198103000-00003. [DOI] [PubMed] [Google Scholar]
  10. Kahn H. A. The Dorn study of smoking and mortality among U.S. veterans: report on eight and one-half years of observation. Natl Cancer Inst Monogr. 1966 Jan;19:1–125. [PubMed] [Google Scholar]
  11. Little J. B., Radford E. P., Jr, McCombs H. L., Hunt V. R. Distribution of polonium-210 in pulmonary tissues of cigarette smokers. N Engl J Med. 1965 Dec 16;273(25):1343–1351. doi: 10.1056/NEJM196512162732501. [DOI] [PubMed] [Google Scholar]
  12. Lloyd E. L., Gemmell M. A., Henning C. B., Gemmell D. S., Zabransky B. J. Transformation of mammalian cells by alpha particles. Int J Radiat Biol Relat Stud Phys Chem Med. 1979 Nov;36(5):467–478. doi: 10.1080/09553007914551261. [DOI] [PubMed] [Google Scholar]
  13. Lundin F. E., Jr Lloyd JW, Smith EM, Archer VE, Holaday DA: Mortality of uranium miners in relation to radiation exposure, hard-rock mining and cigarette smoking--1950 through September 1967. Health Phys. 1969 May;16(5):571–578. doi: 10.1097/00004032-196905000-00004. [DOI] [PubMed] [Google Scholar]
  14. Martell E. A. Radioactivity of tobacco trichomes and insoluble cigarette smoke particles. Nature. 1974 May 17;249(454):215–217. doi: 10.1038/249215a0. [DOI] [PubMed] [Google Scholar]
  15. Martell E. A. Tobacco radioactivity and cancer in smokers. Am Sci. 1975 Jul-Aug;63(4):404–412. [PubMed] [Google Scholar]
  16. POLLAK L. W. Counting of Aitken nuclei and applications of the counting results. Int J Air Pollut. 1959 Apr;1(4):293–306. [PubMed] [Google Scholar]
  17. Radford E. P., Martell E. A. Polonium-210: lead-210 ratios as an index of residence times of insoluble particles from cigarette smoke in bronchial epithelium. Inhaled Part. 1975 Sep;4(Pt 2):567–581. [PubMed] [Google Scholar]
  18. Rundo J., Markun F., Plondke N. J. Observation of high concentrations of radon in certain houses. Health Phys. 1979 Jun;36(6):729–730. [PubMed] [Google Scholar]
  19. Schlesinger R. B., Lippmann M. Selective particle deposition and bronchogenic carcinoma. Environ Res. 1978 Jun;15(3):424–431. doi: 10.1016/0013-9351(78)90123-8. [DOI] [PubMed] [Google Scholar]
  20. Steinhäusler F. Long-term measurements of 222Rn, 220Rn, 214Pb and 212Pb concentrations in the air of private and public buildings and their dependence on meteorological parameters. Health Phys. 1975 Nov;29(5):705–713. doi: 10.1097/00004032-197511000-00010. [DOI] [PubMed] [Google Scholar]
  21. Walsh P. J. Radiation dose to the respiratory tract of uranium miners--a review of the literature. Environ Res. 1970 Jan;3(1):14–36. doi: 10.1016/0013-9351(70)90057-5. [DOI] [PubMed] [Google Scholar]
  22. Yeates D. B., Aspin N., Bryan A. C., Levison H. Regional clearance of ions from the airways of the lung. Am Rev Respir Dis. 1973 Apr;107(4):602–608. doi: 10.1164/arrd.1973.107.4.602. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES