Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Mar;80(5):1322–1326. doi: 10.1073/pnas.80.5.1322

Quantitative spatial distributions of calcium, phosphorus, and sulfur in calcifying epiphysis by high resolution electron spectroscopic imaging.

A L Arsenault, F P Ottensmeyer
PMCID: PMC393589  PMID: 6572390

Abstract

Electron spectroscopic imaging, a new technique that permits the quantitative detection of the spatial distributions of atomic elements at high resolution, has been applied to the epiphyseal zone of hypertrophy in the mouse for the visualization of calcium, phosphorus, and sulfur. Longitudinally sectioned epiphyseal growth plates reveal a developmental sequence in the longitudinal septum leading from a noncalcified matrix to a calcified matrix. During the early stages of this transition, matrix granules containing highly localized concentrations of P (200-400 atoms/nm2) are found spatially separate from Ca-containing sites. These Ca localizations displayed a concentration range of 20-350 atoms/nm2 and a complete spatial overlap with sulfur. At these sites, S levels range from 10 to 200 atoms/nm2. At a later stage, and therefore more proximal to the zone of provisional calcification, the usual scattered, irregularly shaped mineral deposits are found. These sites contain a virtual superposition of Ca with both P and S. The Ca/P and Ca/S ratios of these mineral deposits are predominantly 1.0 with only minor, locally varying ratios present.

Full text

PDF
1322

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson-Sharpe K. M., Ottensmeyer F. P. Spatial resolution and detection sensitivity in microanalysis by electron loss selected imaging. J Microsc. 1981 Jun;122(Pt 3):309–314. doi: 10.1111/j.1365-2818.1981.tb01271.x. [DOI] [PubMed] [Google Scholar]
  2. Anderson H. C. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol. 1969 Apr;41(1):59–72. doi: 10.1083/jcb.41.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bazett-Jones D. P., Ottensmeyer F. P. DNA organization in nucleosomes. Can J Biochem. 1982 Mar;60(3):364–370. doi: 10.1139/o82-043. [DOI] [PubMed] [Google Scholar]
  4. Bazett-Jones D. P., Ottensmeyer F. P. Phosphorus distribution in the nucleosome. Science. 1981 Jan 9;211(4478):169–170. doi: 10.1126/science.7444457. [DOI] [PubMed] [Google Scholar]
  5. Boskey A. L., Posner A. S. The role of synthetic and bone extracted Ca-phospholipid-PO4 complexes in hydroxyapatite formation. Calcif Tissue Res. 1977 Oct 20;23(3):251–258. doi: 10.1007/BF02012794. [DOI] [PubMed] [Google Scholar]
  6. Brighton C. T., Hunt R. M. Mitochondrial calcium and its role in calcification. Histochemical localization of calcium in electron micrographs of the epiphyseal growth plate with K-pyroantimonate. Clin Orthop Relat Res. 1974 May;(100):406–416. [PubMed] [Google Scholar]
  7. Burger E. H., Matthews J. L. Cellular calcium distribution in fetal bones studied with K-pyroantimonate. Calcif Tissue Res. 1978 Dec 8;26(2):181–190. doi: 10.1007/BF02013254. [DOI] [PubMed] [Google Scholar]
  8. Landis W. J., Glimcher M. J. Electron diffraction and electron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res. 1978 May;63(2):188–223. doi: 10.1016/s0022-5320(78)80074-4. [DOI] [PubMed] [Google Scholar]
  9. Landis W. J., Glimcher M. J. Electron optical and analytical observations of rat growth plate cartilage prepared by ultracryomicrotomy: the failure to detect a mineral phase in matrix vesicles and the identification of heterodispersed particles as the initial solid phase of calcium phosphate deposited in the extracellular matrix. J Ultrastruct Res. 1982 Mar;78(3):227–268. doi: 10.1016/s0022-5320(82)80001-4. [DOI] [PubMed] [Google Scholar]
  10. Morris D. C., Appleton J. Ultrastructural localization of calcium in the mandibular condylar growth cartilage of the rat. Calcif Tissue Int. 1980;30(1):27–34. doi: 10.1007/BF02408603. [DOI] [PubMed] [Google Scholar]
  11. Ottensmeyer F. P., Andrew J. W. High-resolution microanalysis of biological specimens by electron energy loss spectroscopy and by electron spectroscopic imaging. J Ultrastruct Res. 1980 Sep;72(3):336–348. doi: 10.1016/s0022-5320(80)90069-6. [DOI] [PubMed] [Google Scholar]
  12. Poole A. R., Pidoux I., Rosenberg L. Role of proteoglycans in endochondral ossification: immunofluorescent localization of link protein and proteoglycan monomer in bovine fetal epiphyseal growth plate. J Cell Biol. 1982 Feb;92(2):249–260. doi: 10.1083/jcb.92.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Price P. A., Otsuka A. A., Poser J. W., Kristaponis J., Raman N. Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci U S A. 1976 May;73(5):1447–1451. doi: 10.1073/pnas.73.5.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Thyberg J., Lohmander S., Friberg U. Electron microscopic demonstration of proteoglycans in guinea pig epiphyseal cartilage. J Ultrastruct Res. 1973 Dec;45(5):407–427. doi: 10.1016/s0022-5320(73)80070-x. [DOI] [PubMed] [Google Scholar]
  15. Wuthier R. E., Gore S. T. Partition of inorganic ions and phospholipids in isolated cell, membrane and matrix vesicle fractions: evidence for Ca-Pi-acidic phospholipid complexes. Calcif Tissue Res. 1977 Dec 28;24(2):163–171. doi: 10.1007/BF02223311. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES