Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Mar;80(5):1472–1476. doi: 10.1073/pnas.80.5.1472

Functional role for vasoactive intestinal polypeptide in the caudate nucleus: a 2-deoxy[14C]glucose investigation.

J McCulloch, P A Kelly, R Uddman, L Edvinsson
PMCID: PMC393620  PMID: 6572400

Abstract

The quantitative autoradiographic 2-deoxy-[14C]glucose technique has been used with conscious rats to investigate the functional consequences (reflected as alterations in local rates of glucose utilization) of unilateral intrastriatal administration of vasoactive intestinal polypeptide. Intrastriatal administration of vasoactive intestinal polypeptide (20 pmol) significantly increased local glucose utilization in the injected striatum, where the increased use was localized in small punctate areas (100-500 microns wide in coronal sections) scattered throughout the nucleus at considerable distances (up to 4 mm) from the injection site. Significantly increased glucose utilization after intrastriatal injection of vasoactive intestinal polypeptide was observed in a number of regions (e.g., substantia nigra pars compacta, entopeduncular nucleus, lateral habenular nucleus, entorhinal, pyriform cortices, and amygdala) with known primary or secondary neuronal connections with the caudate nucleus. These alterations in glucose utilization were highly focal in nature, with the majority (40 of the 50 examined) of brain regions displaying unaltered rates of glucose utilization. The data provide evidence, obtained in conscious animals, that vasoactive intestinal polypeptide can modify functional processes in the caudate nucleus.

Full text

PDF
1472

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Besson J., Rotsztejn W., Laburthe M., Epelbaum J., Beaudet A., Kordon C., Rosselin G. Vasoactive intestinal peptide (VIP): brain distribution, subcellular localization and effect of deafferentation of the hypothalamus in male rats. Brain Res. 1979 Apr 6;165(1):79–85. doi: 10.1016/0006-8993(79)90046-5. [DOI] [PubMed] [Google Scholar]
  2. Borghi C., Nicosia S., Giachetti A., Said S. I. Vasoactive intestinal polypeptide (VIP) stimulates adenylate cyclase in selected areas of rat brain. Life Sci. 1979 Jan 1;24(1):65–70. doi: 10.1016/0024-3205(79)90281-9. [DOI] [PubMed] [Google Scholar]
  3. Fallon J. H. Collateralization of monoamine neurons: mesotelencephalic dopamine projections to caudate, septum, and frontal cortex. J Neurosci. 1981 Dec;1(12):1361–1368. doi: 10.1523/JNEUROSCI.01-12-01361.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fallon J. H., Koziell D. A., Moore R. Y. Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex. J Comp Neurol. 1978 Aug 1;180(3):509–532. doi: 10.1002/cne.901800308. [DOI] [PubMed] [Google Scholar]
  5. Fallon J. H., Moore R. Y. Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol. 1978 Aug 1;180(3):545–580. doi: 10.1002/cne.901800310. [DOI] [PubMed] [Google Scholar]
  6. Goldman P. S., Nauta W. J. An intricately patterned prefronto-caudate projection in the rhesus monkey. J Comp Neurol. 1977 Feb 1;72(3):369–386. doi: 10.1002/cne.901710305. [DOI] [PubMed] [Google Scholar]
  7. Graybiel A. M., Ragsdale C. W., Jr Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5723–5726. doi: 10.1073/pnas.75.11.5723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Graybiel A. M., Ragsdale C. W., Jr, Yoneoka E. S., Elde R. P. An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining. Neuroscience. 1981;6(3):377–397. doi: 10.1016/0306-4522(81)90131-7. [DOI] [PubMed] [Google Scholar]
  9. Herkenham M., Pert C. B. Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum. Nature. 1981 Jun 4;291(5814):415–418. doi: 10.1038/291415a0. [DOI] [PubMed] [Google Scholar]
  10. Kelly P. A., Graham D. I., McCulloch J. Specific alterations in local cerebral glucose utilization following striatal lesions. Brain Res. 1982 Feb 4;233(1):157–172. doi: 10.1016/0006-8993(82)90937-4. [DOI] [PubMed] [Google Scholar]
  11. Keltz T. N., Straus E., Yalow R. S. Degradation of vasoactive intestinal polypeptide by tissue homogenates. Biochem Biophys Res Commun. 1980 Jan 29;92(2):669–674. doi: 10.1016/0006-291x(80)90385-x. [DOI] [PubMed] [Google Scholar]
  12. Kerwin R. W., Pay S., Bhoola K. D., Pycock C. J. Vasoactive intestinal polypeptide (VIP)-sensitive adenylate cyclase in rat brain: regional distribution and localization on hypothalamic neurons. J Pharm Pharmacol. 1980 Aug;32(8):561–566. doi: 10.1111/j.2042-7158.1980.tb12997.x. [DOI] [PubMed] [Google Scholar]
  13. Kimura H., McGeer E. G., McGeer P. L. Metabolic alterations in an animal model of Huntington's disease using the 14C-deoxyglucose method. J Neural Transm Suppl. 1980;(16):103–109. doi: 10.1007/978-3-7091-8582-7_11. [DOI] [PubMed] [Google Scholar]
  14. Lorén I., Emson P. C., Fahrenkrug J., Björklund A., Alumets J., Håkanson R., Sundler F. Distribution of vasoactive intestinal polypeptide in the rat and mouse brain. Neuroscience. 1979;4(12):1953–1976. doi: 10.1016/0306-4522(79)90068-x. [DOI] [PubMed] [Google Scholar]
  15. McCulloch J., Edvinsson L. Cerebral circulatory and metabolic effects of vasoactive intestinal polypeptide. Am J Physiol. 1980 Apr;238(4):H449–H456. doi: 10.1152/ajpheart.1980.238.4.H449. [DOI] [PubMed] [Google Scholar]
  16. Meyer D. K., Beinfeld M. C., Oertel W. H., Brownstein M. J. Origin of the cholecystokinin-containing fibers in the rat caudatoputamen. Science. 1982 Jan 8;215(4529):187–188. doi: 10.1126/science.7053570. [DOI] [PubMed] [Google Scholar]
  17. Quik M., Emson P. C., Fahrenkrug J., Iversen L. L. Effect of kainic acid injections and other brain lesions on vasoactive intestinal peptide (VIP)-stimulated formation of cAMP in rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1979 Apr;306(3):281–286. doi: 10.1007/BF00507115. [DOI] [PubMed] [Google Scholar]
  18. Quik M., Iversen L. L., Bloom S. R. Effect of vasoactive intestinal peptide (VIP) and other peptides on cAMP accumulation in rat brain. Biochem Pharmacol. 1978;27(18):2209–2213. doi: 10.1016/0006-2952(78)90079-5. [DOI] [PubMed] [Google Scholar]
  19. Sokoloff L. Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J Cereb Blood Flow Metab. 1981;1(1):7–36. doi: 10.1038/jcbfm.1981.4. [DOI] [PubMed] [Google Scholar]
  20. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  21. Taylor D. P., Pert C. B. Vasoactive intestinal polypeptide: specific binding to rat brain membranes. Proc Natl Acad Sci U S A. 1979 Feb;76(2):660–664. doi: 10.1073/pnas.76.2.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wooten G. F., Collins R. C. Metabolic effects of unilateral lesion of the substantia nigra. J Neurosci. 1981 Mar;1(3):285–291. doi: 10.1523/JNEUROSCI.01-03-00285.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES