Abstract
Mammalian cells and tissues were found to have two pathways for the biosynthesis of tetrahydrobiopterin (BH4): (i) the conversion of GTP to BH4 by a methotrexate-insensitive de novo pathway, and (ii) the conversion of sepiapterin to BH4 by a pterin salvage pathway dependent on dihydrofolate reductase (5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity. In a Chinese hamster ovary cell mutant lacking dihydrofolate reductase (DUKX-B11), endogenous formation of BH4 proceeds normally but, unlike the parent cells, these cells or extracts of them do not convert sepiapterin or 7,8-dihydrobiopterin to BH4. KB cells, which do not contain detectable levels of GTP cyclohydrolase or BH4 but do contain dihydrofolate reductase, readily convert sepiapterin to BH4 and this conversion is completely prevented by methotrexate. In supernatant fractions of bovine adrenal medulla, the conversion of sepiapterin to BH4 is completely inhibited by methotrexate. Similarly, this conversion in rat brain in vivo is methotrexate-sensitive. Sepiapterin and 7,8-dihydrobiopterin apparently do not enter the de novo pathway of BH4 biosynthesis and may be derived from labile intermediates which have not yet been characterized.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer M. C., Scrimgeour K. G. Rearrangement of quinonoid dihydropteridines to 7,8-dihydropteridines. Can J Biochem. 1970 Mar;48(3):278–287. doi: 10.1139/o70-049. [DOI] [PubMed] [Google Scholar]
- Brewster T. G., Moskowitz M. A., Kaufman S., Breslow J. L., Milstien S., Abroms I. F. Dihydropteridine reductase deficiency associated with severe neurologic disease and mild hyperphenylalaninemia. Pediatrics. 1979 Jan;63(1):94–99. [PubMed] [Google Scholar]
- Bublitz C. The use of dithiothreitol in the assay of phenylalanine hydroxylase. Biochem Med. 1977 Feb;17(1):13–19. doi: 10.1016/0006-2944(77)90004-7. [DOI] [PubMed] [Google Scholar]
- Cavallito J. C., Nichol C. A., Brenckman W. D., Jr, Deangelis R. L., Stickney D. R., Simmons W. S., Sigel C. W. Lipid-soluble inhibitors of dihydrofolate reductase. I. Kinetics, tissue distribution, and extent of metabolism of pyrimethamine, metoprine, and etoprine in the rat, dog, and man. Drug Metab Dispos. 1978 May-Jun;6(3):329–337. [PubMed] [Google Scholar]
- Craine J. E., Hall E. S., Kaufman S. The isolation and characterization of dihydropteridine reductase from sheep liver. J Biol Chem. 1972 Oct 10;247(19):6082–6091. [PubMed] [Google Scholar]
- Curtius H. C., Niederwieser A., Viscontini M., Otten A., Schaub J., Scheibenreiter S., Schmidt H. Atypical phenylketonuria due to tetrahydrobiopterin deficiency. Diagnosis and treatment with tetrahydrobiopterin, dihydrobiopterin and sepiapterin. Clin Chim Acta. 1979 Apr 16;93(2):251–262. doi: 10.1016/0009-8981(79)90097-4. [DOI] [PubMed] [Google Scholar]
- Danks D. M., Schlesinger P., Firgaira F., Cotton R. G., Watson B. M., Rembold H., Hennings G. Malignant hyperphenylalaninemia--clinical features, biochemical findings, and experience with administration of biopterins. Pediatr Res. 1979 Oct;13(10):1150–1155. doi: 10.1203/00006450-197910000-00014. [DOI] [PubMed] [Google Scholar]
- Duch D. S., Bigner D. D., Bowers S. W., Nichol C. A. Dihydrofolate reductase in primary brain tumors, cell cultures of central nervous system origin, and normal brain during fetal and neonatal growth. Cancer Res. 1979 Feb;39(2 Pt 1):487–491. [PubMed] [Google Scholar]
- Duch D. S., Edelstein M. P., Bowers S. W., Nichol C. A. Biochemical and chemotherapeutic studies on 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine (BW 301U), a novel lipid-soluble inhibitor of dihydrofolate reductase. Cancer Res. 1982 Oct;42(10):3987–3994. [PubMed] [Google Scholar]
- Duch D. S., Edelstein M. P., Nichol C. A. Inhibition of histamine-metabolizing enzymes and elevation of histamine levels in tissues by lipid-soluble anticancer folate antagonists. Mol Pharmacol. 1980 Jul;18(1):100–104. [PubMed] [Google Scholar]
- Eto I., Fukushima K., Shiota T. Enzymatic synthesis of biopterin from D-erythrodihydroneopterin triphosphate by extracts of kidneys from Syrian golden hamsters. J Biol Chem. 1976 Nov 10;251(21):6505–6512. [PubMed] [Google Scholar]
- FUTTERMAN S. Enzymatic reduction of folic acid and dihydrofolic acid to tetrahydrofolic acid. J Biol Chem. 1957 Oct;228(2):1031–1038. [PubMed] [Google Scholar]
- Fukushima T., Kobayashi K., Eto I., Shiota T. A differential microdetermination for the various forms of biopterin. Anal Biochem. 1978 Aug 15;89(1):71–79. doi: 10.1016/0003-2697(78)90727-3. [DOI] [PubMed] [Google Scholar]
- Fukushima T., Nixon J. C. Analysis of reduced forms of biopterin in biological tissues and fluids. Anal Biochem. 1980 Feb;102(1):176–188. doi: 10.1016/0003-2697(80)90336-x. [DOI] [PubMed] [Google Scholar]
- Gál E. M., Bybee J. A., Sherman A. D. Biopterin. V. De novo synthesis of dihydrobiopterin: evidence for its quinonoid structure and lack of dependence of its reduction to tetrahydrobiopterin on dihydrofolate reductase. J Neurochem. 1979 Jan;32(1):179–186. doi: 10.1111/j.1471-4159.1979.tb04525.x. [DOI] [PubMed] [Google Scholar]
- Gál E. M., Nelson J. M., Sherman A. D. Biopterin. III. Purification and characterization of enzymes involved in the cerebral synthesis of 7,8-dihydrobiopterin. Neurochem Res. 1978 Feb;3(1):69–88. doi: 10.1007/BF00964361. [DOI] [PubMed] [Google Scholar]
- HAKALA M. T., TAYLOR E. The ability of purine and thymine derivatives and of glycine to support the growth of mammalian cells in culture. J Biol Chem. 1959 Jan;234(1):126–128. [PubMed] [Google Scholar]
- Kaufman S. Metabolism of the phenylalanine hydroxylation cofactor. J Biol Chem. 1967 Sep 10;242(17):3934–3943. [PubMed] [Google Scholar]
- Krivi G. G., Brown G. M. Purification and properties of the enzymes from Drosophila melanogaster that catalyze the synthesis of sepiapterin from dihydroneopterin triphosphate. Biochem Genet. 1979 Apr;17(3-4):371–390. doi: 10.1007/BF00498976. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- NICHOL C. A., ANTON A. H., ZAKRZEWSKI S. F. A labile precursor of citrovorum factor. Science. 1955 Feb 25;121(3139):275–279. doi: 10.1126/science.121.3139.275. [DOI] [PubMed] [Google Scholar]
- Otsuka H., Sugiura K., Goto M. Biosynthesis of biopterin in Ascaris lumbricoides suum. Biochim Biophys Acta. 1980 Apr 17;629(1):69–76. doi: 10.1016/0304-4165(80)90265-2. [DOI] [PubMed] [Google Scholar]
- Pollock R. J., Kaufman S. Dihydrofolate reductase is present in brain. J Neurochem. 1978 Jan;30(1):253–256. doi: 10.1111/j.1471-4159.1978.tb07059.x. [DOI] [PubMed] [Google Scholar]
- Rubin R. C., Ommaya A. K., Henderson E. S., Bering E. A., Rall D. P. Cerebrospinal fluid perfusion for central nervous system neoplasms. Neurology. 1966 Jul;16(7):680–692. doi: 10.1212/wnl.16.7.680. [DOI] [PubMed] [Google Scholar]
- Spector R., Fosburg M., Levy P., Abelson H. T. Tetrahydrobiopterin synthesis by rabbit brain dihydrofolate reductase. J Neurochem. 1978 Apr;30(4):899–901. doi: 10.1111/j.1471-4159.1978.tb10799.x. [DOI] [PubMed] [Google Scholar]
- TIETZ A., LINDBERG M., KENNEDY E. P. A NEW PTERIDINE-REQUIRING ENZYME SYSTEM FOR THE OXIDATION OF GLYCERYL ETHERS. J Biol Chem. 1964 Dec;239:4081–4090. [PubMed] [Google Scholar]
- Tanaka K., Akino M., Hagi Y., Doi M., Shiota T. The enzymatic synthesis of sepiapterin by chicken kidney preparations. J Biol Chem. 1981 Mar 25;256(6):2963–2972. [PubMed] [Google Scholar]
- Urlaub G., Chasin L. A. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4216–4220. doi: 10.1073/pnas.77.7.4216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viveros O. H., Lee C. L., Abou-Donia M. M., Nixon J. C., Nichol C. A. Biopterin cofactor biosynthesis: independent regulation of GTP cyclohydrolase in adrenal medulla and cortex. Science. 1981 Jul 17;213(4505):349–350. doi: 10.1126/science.7017928. [DOI] [PubMed] [Google Scholar]
- Williams A. C., Levine R. A., Chase T. N., Lovenberg W., Calne D. B. CFS hydroxylase cofactor levels in some neurological diseases. J Neurol Neurosurg Psychiatry. 1980 Aug;43(8):735–738. doi: 10.1136/jnnp.43.8.735. [DOI] [PMC free article] [PubMed] [Google Scholar]