Abstract
Accurate birefringence measurements show that fibrinogen orients to a small degree in high magnetic fields. This effect can be explained as due to the molecule having about 30% (by weight) alpha-helix oriented relatively parallel to the long axis. Birefringence measurements on fully oriented fibrin suggest that aligned alpha-helical content is less than that estimated for fibrinogen. But because of limitations in the analysis this difference must be viewed with caution. Highly oriented fibrin results when polymerization takes place slowly in a strong magnetic field. Low-angle neutron diffraction patterns from oriented fibrin made in the presence of EDTA, made in the presence of calcium, or stabilized with factor XIIIa are very similar, showing that the packing of the molecules within the fibers is the same or very similar in these different preparations. The induced magnetic birefringence was used to follow fibrin formation under conditions in which thrombin was rate limiting. The fiber network formed by approximately the gelation point constitutes a kind of matrix or frame that is largely built upon during the remaining approximately 85% of the reaction. After gelation the reaction is pseudo-first order.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blombäck B., Hessel B., Hogg D., Therkildsen L. A two-step fibrinogen--fibrin transition in blood coagulation. Nature. 1978 Oct 12;275(5680):501–505. doi: 10.1038/275501a0. [DOI] [PubMed] [Google Scholar]
- Budzynski A. Z. Difference in conformation of fibrinogen degradation products as revealed by hydrogen exchange and spectropolarimetry. Biochim Biophys Acta. 1971 Mar 23;229(3):663–671. doi: 10.1016/0005-2795(71)90282-0. [DOI] [PubMed] [Google Scholar]
- Collen D., Vandereycken G., De Maeyer L. Influence of hydrostatic pressure on the reversible polymerization of fibrin monomers. Nature. 1970 Nov 14;228(5272):669–671. doi: 10.1038/228669a0. [DOI] [PubMed] [Google Scholar]
- Doolittle R. F., Goldbaum D. M., Doolittle L. R. Designation of sequences involved in the "coiled-coil" interdomainal connections in fibrinogen: constructions of an atomic scale model. J Mol Biol. 1978 Apr 5;120(2):311–325. doi: 10.1016/0022-2836(78)90070-0. [DOI] [PubMed] [Google Scholar]
- Estis L. F., Haschemeyer R. H. Electron microscopy of negatively stained and unstained fibrinogen. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3139–3143. doi: 10.1073/pnas.77.6.3139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferry J. D. The Mechanism of Polymerization of Fibrinogen. Proc Natl Acad Sci U S A. 1952 Jul;38(7):566–569. doi: 10.1073/pnas.38.7.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fowler W. E., Erickson H. P. Trinodular structure of fibrinogen. Confirmation by both shadowing and negative stain electron microscopy. J Mol Biol. 1979 Oct 25;134(2):241–249. doi: 10.1016/0022-2836(79)90034-2. [DOI] [PubMed] [Google Scholar]
- Fowler W. E., Hantgan R. R., Hermans J., Erickson H. P. Structure of the fibrin protofibril. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4872–4876. doi: 10.1073/pnas.78.8.4872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALL C. E., SLAYTER H. S. The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol. 1959 Jan 25;5(1):11–16. doi: 10.1083/jcb.5.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hantgan R. R., Hermans J. Assembly of fibrin. A light scattering study. J Biol Chem. 1979 Nov 25;254(22):11272–11281. [PubMed] [Google Scholar]
- Hantgan R., Fowler W., Erickson H., Hermans J. Fibrin assembly: a comparison of electron microscopic and light scattering results. Thromb Haemost. 1980 Dec 19;44(3):119–124. [PubMed] [Google Scholar]
- Hewat E. A., Tranqui L., Wade R. H. Structural study of modified fibrinogen microcrystals by electron microscopy. J Mol Biol. 1982 Nov 5;161(3):459–477. doi: 10.1016/0022-2836(82)90249-2. [DOI] [PubMed] [Google Scholar]
- Jackson C. M., Nemerson Y. Blood coagulation. Annu Rev Biochem. 1980;49:765–811. doi: 10.1146/annurev.bi.49.070180.004001. [DOI] [PubMed] [Google Scholar]
- KEKWICK R. A., MACKAY M. E., NANCE M. H., RECORD B. R. The purification of human fibrinogen. Biochem J. 1955 Aug;60(4):671–683. doi: 10.1042/bj0600671b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makowski L., Caspar D. L., Marvin D. A. Filamentous bacteriophage Pf1 structure determined at 7A resolution by refinement of models for the alpha-helical subunit. J Mol Biol. 1980 Jun 25;140(2):149–181. doi: 10.1016/0022-2836(80)90101-1. [DOI] [PubMed] [Google Scholar]
- Mihalyi E. Physicochemical studies of bovine fibrinogen. 3. Optical rotation of the native and denatured molecule. Biochim Biophys Acta. 1965 Jul 22;102(2):487–499. doi: 10.1016/0926-6585(65)90139-1. [DOI] [PubMed] [Google Scholar]
- Nave C., Brown R. S., Fowler A. G., Ladner J. E., Marvin D. A., Provencher S. W., Tsugita A., Armstrong J., Perham R. N. Pf1 filamentous bacterial virus. X-ray fibre diffraction analysis of two heavy-atom derivatives. J Mol Biol. 1981 Jul 15;149(4):675–707. doi: 10.1016/0022-2836(81)90353-3. [DOI] [PubMed] [Google Scholar]
- OOSAWA F., KASAI M. A theory of linear and helical aggregations of macromolecules. J Mol Biol. 1962 Jan;4:10–21. doi: 10.1016/s0022-2836(62)80112-0. [DOI] [PubMed] [Google Scholar]
- Price T. M., Strong D. D., Rudee M. L., Doolittle R. F. Shadow-cast electron microscopy of fibrinogen with antibody fragments bound to specific regions. Proc Natl Acad Sci U S A. 1981 Jan;78(1):200–204. doi: 10.1073/pnas.78.1.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith G. F. Fibrinogen-fibrin conversion. The mechanism of fibrin-polymer formation in solution. Biochem J. 1980 Jan 1;185(1):1–11. doi: 10.1042/bj1850001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Telford J. N., Nagy J. A., Hatcher P. A., Scheraga H. A. Location of peptide fragments in the fibrinogen molecule by immunoelectron microscopy. Proc Natl Acad Sci U S A. 1980 May;77(5):2372–2376. doi: 10.1073/pnas.77.5.2372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tooney N. M., Cohen C. Crystalline states of a modified fibrinogen. J Mol Biol. 1977 Feb 25;110(2):363–385. doi: 10.1016/s0022-2836(77)80077-6. [DOI] [PubMed] [Google Scholar]
- Torbet J., Freyssinet J. M., Hudry-Clergeon G. Oriented fibrin gels formed by polymerization in strong magnetic fields. Nature. 1981 Jan 1;289(5793):91–93. doi: 10.1038/289091a0. [DOI] [PubMed] [Google Scholar]
- Torbet J., Maret G. High-field magnetic birefringence study of the structure of rodlike phages Pf1 and fd in solution. Biopolymers. 1981 Dec;20(12):2657–2669. doi: 10.1002/bip.1981.360201212. [DOI] [PubMed] [Google Scholar]
- Weisel J. W., Warren S. G., Cohen C. Crystals of modified fibrinogen: size, shape and packing of molecules. J Mol Biol. 1978 Dec 5;126(2):159–183. doi: 10.1016/0022-2836(78)90357-1. [DOI] [PubMed] [Google Scholar]
- Williams R. C. Morphology of bovine fibrinogen monomers and fibrin oligomers. J Mol Biol. 1981 Aug 15;150(3):399–408. doi: 10.1016/0022-2836(81)90555-6. [DOI] [PubMed] [Google Scholar]
