Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Mar;80(6):1650–1654. doi: 10.1073/pnas.80.6.1650

Biology of Langerhans cells: Selective migration of Langerhans cells into allogeneic and xenogeneic grafts on nude mice

Gerald G Krueger *, Raymond A Daynes , Mansoor Emam *
PMCID: PMC393660  PMID: 6572931

Abstract

A major question challenging immunobiologists relates to those mechanisms that control the selective movement of cells involved in immune and inflammatory processes at various tissue sites such as the skin. Little is known about those influences that control the selective migration of macrophage-like Langerhans cells (LC) to normal epidermis, where it is uniformly distributed. Mechanistically, this includes the interaction of blood-borne LC precursors with the vascular endothelium of the skin and those factors that control the migration of the LC into the avascular epidermal component of the skin. By using (i) monoclonal antibodies specific for I-region associated Ia antigens found on LC from various inbred strains of animals and (ii) the congenitally athymic (nude) mouse as an immunologically compromised recipient of allografts and selected xenografts, we developed a model system to study the factors that restrict LC migration into the epidermis. Using this model, which excludes the need to lethally x-irradiate graft recipients, we established that: (i) the ingress of LC does not show major histocompatibility complex restriction [LC of the nude host are capable of migrating into the epidermis of allogeneic and certain xenogeneic (rat) skin grafts]; (ii) host LC are incapable of migrating into the epidermis of guinea pig or human skin grafts; (iii) the ingress of host LC into the epidermis of the graft is not accompanied by an overgrowth of the graft by host epidermis; and (iv) LC or LC precursors are capable of dividing in the skin or, alternatively, represent an extremely long-lived cell population. The specificity of this model system provides a powerful tool to help understand many aspects of LC biology. Grafting human skin to the nude mouse not only provides a biologic support system for the graft but also is, by design, a system that is devoid of contaminating circulating precursor cell types. Manipulation of the experimental conditions is quite easy and provides a highly specific means to investigate many parameters of LC function.

Keywords: trafficking, genetic restriction, monoclonal antibodies

Full text

PDF
1650

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aberer W., Schuler G., Stingl G., Hönigsmann H., Wolff K. Ultraviolet light depletes surface markers of Langerhans cells. J Invest Dermatol. 1981 Mar;76(3):202–210. doi: 10.1111/1523-1747.ep12525745. [DOI] [PubMed] [Google Scholar]
  2. BRENT L., MEDAWAR P. B. NATURE OF THE NORMAL LYMPHOCYTE TRANSFER REACTION. Nature. 1964 Oct 3;204:90–91. doi: 10.1038/204090a0. [DOI] [PubMed] [Google Scholar]
  3. Berman B., Gigli I. Complement receptors on guinea pig epidermal Langerhans cells. J Immunol. 1980 Feb;124(2):685–690. [PubMed] [Google Scholar]
  4. Butcher E. C., Scollay R. G., Weissman I. L. Lymphocyte adherence to high endothelial venules: characterization of a modified in vitro assay, and examination of the binding of syngeneic and allogeneic lymphocyte populations. J Immunol. 1979 Nov;123(5):1996–2003. [PubMed] [Google Scholar]
  5. Carey G. D., Chin Y. H., Woodruff J. J. Lymphocyte recognition of lymph node high endothelium. III. Enhancement by a component of thoracic duct lymph. J Immunol. 1981 Sep;127(3):976–979. [PubMed] [Google Scholar]
  6. Chin Y. H., Carey G. D., Woodruff J. J. Lymphocyte recognition of lymph node high endothelium. I. Inhibition of in vitro binding by a component of thoracic duct lymph. J Immunol. 1980 Oct;125(4):1764–1769. [PubMed] [Google Scholar]
  7. Frelinger J. G., Hood L., Hill S., Frelinger J. A. Mouse epidermal Ia molecules have a bone marrow origin. Nature. 1979 Nov 15;282(5736):321–323. doi: 10.1038/282321a0. [DOI] [PubMed] [Google Scholar]
  8. GOWANS J. L., KNIGHT E. J. THE ROUTE OF RE-CIRCULATION OF LYMPHOCYTES IN THE RAT. Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:257–282. doi: 10.1098/rspb.1964.0001. [DOI] [PubMed] [Google Scholar]
  9. Giacometti L., Montagna W. Langerhans cells: uptake of tritiated thymidine. Science. 1967 Jul 28;157(3787):439–440. doi: 10.1126/science.157.3787.439. [DOI] [PubMed] [Google Scholar]
  10. Juhlin L., Shelley W. B. New staining techniques for the Langerhans cell. Acta Derm Venereol. 1977;57(4):289–296. [PubMed] [Google Scholar]
  11. Katz S. I., Tamaki K., Sachs D. H. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature. 1979 Nov 15;282(5736):324–326. doi: 10.1038/282324a0. [DOI] [PubMed] [Google Scholar]
  12. Klareskog L., Tjernlund U., Forsum U., Peterson P. A. Epidermal Langerhans cells express Ia antigens. Nature. 1977 Jul 21;268(5617):248–250. doi: 10.1038/268248a0. [DOI] [PubMed] [Google Scholar]
  13. Krueger G. G., Chambers D. A., Shelby J. Epidermal proliferation of nude mouse skin, pig skin, and pig skin grafts. Failure of nude mouse skin to respond to the tumor promoter 12-O-tetradecanoyl phorbol 13-acetate. J Exp Med. 1980 Nov 1;152(5):1329–1339. doi: 10.1084/jem.152.5.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krueger G. G., Shelby J. Biology of human skin transplanted to the nude mouse: I. Response to agents which modify epidermal proliferation. J Invest Dermatol. 1981 Jun;76(6):506–510. doi: 10.1111/1523-1747.ep12521231. [DOI] [PubMed] [Google Scholar]
  15. Lynch D. H., Gurish M. F., Daynes R. A. Relationship between epidermal Langerhans cell density ATPase activity and the induction of contact hypersensitivity. J Immunol. 1981 May;126(5):1892–1897. [PubMed] [Google Scholar]
  16. Macher E., Chase M. W. Studies on the sensitization of animals with simple chemical compounds. XI. The fate of labeled picryl chloride and dinitrochlorobenzene after sensitizing injections. J Exp Med. 1969 Jan 1;129(1):81–102. doi: 10.1084/jem.129.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Macher E., Chase M. W. Studies on the sensitization of animals with simple chemical compounds. XII. The influence of excision of allergenic depots on onset of delayed hypersensitivity and tolerance. J Exp Med. 1969 Jan 1;129(1):103–121. doi: 10.1084/jem.129.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mackenzie I. C., Squier C. A. Cytochemical identification of ATPase-positive langerhans cells in EDTA-separated sheets of mouse epidermis. Br J Dermatol. 1975 May;92(5):523–533. doi: 10.1111/j.1365-2133.1975.tb03120.x. [DOI] [PubMed] [Google Scholar]
  19. Mier P. D., Gommans J. M., Roelfzema H. On the aetiology of psoriasis. Br J Dermatol. 1980 Oct;103(4):457–460. doi: 10.1111/j.1365-2133.1980.tb07272.x. [DOI] [PubMed] [Google Scholar]
  20. Nordlund J. J., Ackles A. E., Lerner A. B. The effects of ultraviolet light and certain drugs on La-bearing Langerhans cells in murine epidermis. Cell Immunol. 1981 May 1;60(1):50–63. doi: 10.1016/0008-8749(81)90247-1. [DOI] [PubMed] [Google Scholar]
  21. Potten C. S., Allen T. D. A model implicating the Langerhans cell in keratinocyte proliferation control. Differentiation. 1976 Jan 13;5(1):43–47. doi: 10.1111/j.1432-0436.1976.tb00890.x. [DOI] [PubMed] [Google Scholar]
  22. RAMSEIER H., STREILEIN J. W. HOMOGRAFT SENSITIVITY REACTIONS IN IRRADIATED HAMSTERS. Lancet. 1965 Mar 20;1(7386):622–624. doi: 10.1016/s0140-6736(65)91713-7. [DOI] [PubMed] [Google Scholar]
  23. Rose M. L., Parrott D. M., Bruce R. G. Migration of lymphoblasts to the small intestine. II. Divergent migration of mesenteric and peripheral immunoblasts to sites of inflammation in the mouse. Cell Immunol. 1976 Nov;27(1):36–46. doi: 10.1016/0008-8749(76)90151-9. [DOI] [PubMed] [Google Scholar]
  24. Rowden G., Lewis M. G., Sullivan A. K. Ia antigen expression on human epidermal Langerhans cells. Nature. 1977 Jul 21;268(5617):247–248. doi: 10.1038/268247a0. [DOI] [PubMed] [Google Scholar]
  25. Rowden G. The Langerhans cell. Crit Rev Immunol. 1981 Dec;3(2):95–180. [PubMed] [Google Scholar]
  26. Shelley W. B., Juhlin L. Langerhans cells form a reticuloepithelial trap for external contact antigens. Nature. 1976 May 6;261(5555):46–47. doi: 10.1038/261046a0. [DOI] [PubMed] [Google Scholar]
  27. Silberberg-Sinakin I., Gigli I., Baer R. L., Thorbecke G. J. Langerhans cells: role in contact hypersensitivity and relationship to lymphoid dendritic cells and to macrophages. Immunol Rev. 1980;53:203–232. doi: 10.1111/j.1600-065x.1980.tb01045.x. [DOI] [PubMed] [Google Scholar]
  28. Silberberg-Sinakin I., Thorbecke G. J., Baer R. L., Rosenthal S. A., Berezowsky V. Antigen-bearing langerhans cells in skin, dermal lymphatics and in lymph nodes. Cell Immunol. 1976 Aug;25(2):137–151. doi: 10.1016/0008-8749(76)90105-2. [DOI] [PubMed] [Google Scholar]
  29. Stevens S. K., Weissman I. L., Butcher E. C. Differences in the migration of B and T lymphocytes: organ-selective localization in vivo and the role of lymphocyte-endothelial cell recognition. J Immunol. 1982 Feb;128(2):844–851. [PubMed] [Google Scholar]
  30. Stingl G., Katz S. I., Clement L., Green I., Shevach E. M. Immunologic functions of Ia-bearing epidermal Langerhans cells. J Immunol. 1978 Nov;121(5):2005–2013. [PubMed] [Google Scholar]
  31. Stingl G., Katz S. I., Shevach E. M., Rosenthal A. S., Green I. Analogous functions of macrophages and Langerhans cells in the initiation in the immune response. J Invest Dermatol. 1978 Jul;71(1):59–64. doi: 10.1111/1523-1747.ep12544055. [DOI] [PubMed] [Google Scholar]
  32. Stingl G., Wolff-Schreiner E. C., Pichler W. J., Gschnait F., Knapp W., Wolff K. Epidermal Langerhans cells bear Fc and C3 receptors. Nature. 1977 Jul 21;268(5617):245–246. doi: 10.1038/268245a0. [DOI] [PubMed] [Google Scholar]
  33. Streilein J. W., Bergstresser P. R. Langerhans cell function dictates induction of contact hypersensitivity or unresponsiveness to DNFB in Syrian hamsters. J Invest Dermatol. 1981 Sep;77(3):272–277. doi: 10.1111/1523-1747.ep12482453. [DOI] [PubMed] [Google Scholar]
  34. Streilein J. W. Lymphocyte traffic, T-cell malignancies and the skin. J Invest Dermatol. 1978 Sep;71(3):167–171. doi: 10.1111/1523-1747.ep12547071. [DOI] [PubMed] [Google Scholar]
  35. Streilein J. W., Toews G. B., Bergstresser P. R. Corneal allografts fail to express Ia antigens. Nature. 1979 Nov 15;282(5736):326–327. doi: 10.1038/282326a0. [DOI] [PubMed] [Google Scholar]
  36. Streilein J. W., Toews G. B., Bergstresser P. R. Langerhans cells: functional aspects revealed by in vivo grafting studies. J Invest Dermatol. 1980 Jul;75(1):17–21. doi: 10.1111/1523-1747.ep12521061. [DOI] [PubMed] [Google Scholar]
  37. Tamaki K., Stingl G., Gullino M., Sachs D. H., Katz S. I. Ia antigens in mouse skin are predominantly expressed on Langerhans cells. J Immunol. 1979 Aug;123(2):784–787. [PubMed] [Google Scholar]
  38. Toews G. B., Bergstresser P. R., Streilein J. W. Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J Immunol. 1980 Jan;124(1):445–453. [PubMed] [Google Scholar]
  39. Weissman I. L., McGrath M. S., Pillemer E., Hollander N., Rouse R. V., Jerabek L., Stevens S. K., Scollay R. G., Butcher E. C. Normal and neoplastic lymphocyte maturation. J Supramol Struct Cell Biochem. 1981;15(3):303–314. doi: 10.1002/jsscb.1981.380150307. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES