Abstract
To determine the equilibrium constant of the reaction between ATP and protein-bound tyrosine we used as catalyst the highly purified Rous sarcoma src gene transcript. J. M. Sturtevant had earlier found (personal communication) that free tyrosine O-phosphate, upon hydrolysis with alkaline phosphatase in a calorimeter (37 degrees C, pH 9), yielded a delta H degrees of -2.8 kcal/mol (1 kcal = 4.18 kJ), less than half of that found in ATP hydrolysis. Experience with protein-bound serine phosphate (in phosvitin) had shown it to be energy rich [Rabinowitz, M. & Lipmann, F. (1960) J. Biol. Chem. 235, 1043-1050]. We wondered if the same is true for tyrosine phosphate when it is protein bound. From the equilibrium constant of 2.62 (at pH 6.5 and 5 mM Mg2+), we calculate a delta G degrees' of -9.48 kcal/mol for hydrolysis of protein-bound tyrosine phosphate, assuming an approximate delta G degrees' of -10 kcal/mol for hydrolysis of ATP. The experiments show that protein-bound tyrosine phosphate is energy rich, like serine phosphate in phosvitin.
Full text
PDF![1872](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f0/393712/30aed6c675ac/pnas00633-0093.png)
![1873](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f0/393712/f49242b8c1c3/pnas00633-0094.png)
![1874](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f0/393712/4ceee05dda28/pnas00633-0095.png)
![1875](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f0/393712/92269c95056a/pnas00633-0096.png)
![1876](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f0/393712/104cea8207e2/pnas00633-0097.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberty R. A. Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates. J Biol Chem. 1969 Jun 25;244(12):3290–3302. [PubMed] [Google Scholar]
- Atmar V. J., Kuehn G. D. Phosphorylation of ornithine decarboxylase by a polyamine-dependent protein kinase. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5518–5522. doi: 10.1073/pnas.78.9.5518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brugge J. S., Erikson R. L. Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature. 1977 Sep 22;269(5626):346–348. doi: 10.1038/269346a0. [DOI] [PubMed] [Google Scholar]
- Cashel M., Lazzarini R. A., Kalbacher B. An improved method for thin-layer chromatography of nucleotide mixtures containing 32P-labelled orthophosphate. J Chromatogr. 1969 Mar 11;40(1):103–109. doi: 10.1016/s0021-9673(01)96624-5. [DOI] [PubMed] [Google Scholar]
- Chan D. C., Piette L. H. Effect of Tyrosyl modifications on nucleosome reconstitution: a spin-labeling study. Biochemistry. 1982 Jun 8;21(12):3028–3035. doi: 10.1021/bi00541a034. [DOI] [PubMed] [Google Scholar]
- Collett M. S., Erikson R. L. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci U S A. 1978 Apr;75(4):2021–2024. doi: 10.1073/pnas.75.4.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erikson R. L., Collett M. S., Erikson E., Purchio A. F. Evidence that the avian sarcoma virus transforming gene product is a cyclic AMP-independent protein kinase. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6260–6264. doi: 10.1073/pnas.76.12.6260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukami Y., Lipmann F. Purification of a specific reversible tyrosine-O-phosphate phosphatase. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4275–4279. doi: 10.1073/pnas.79.14.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter T. Protein phosphorylated by the RSV transforming function. Cell. 1980 Dec;22(3):647–648. doi: 10.1016/0092-8674(80)90539-5. [DOI] [PubMed] [Google Scholar]
- Hunter T., Sefton B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1311–1315. doi: 10.1073/pnas.77.3.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huttner W. B. Sulphation of tyrosine residues-a widespread modification of proteins. Nature. 1982 Sep 16;299(5880):273–276. doi: 10.1038/299273a0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lerch K., Muir L. W., Fischer E. H. Purification and properties of a yeast protein kinase. Biochemistry. 1975 May 6;14(9):2015–2023. doi: 10.1021/bi00680a032. [DOI] [PubMed] [Google Scholar]
- MITCHELL H. K., LUNAN K. D. TYROSINE-O-PHOSPHATE IN DROSOPHILA. Arch Biochem Biophys. 1964 Jul 20;106:219–222. doi: 10.1016/0003-9861(64)90179-1. [DOI] [PubMed] [Google Scholar]
- Mantel M., Holzer H. Reversibility of the ATP:glutamine synthetase adenylyltransferase reaction. Proc Natl Acad Sci U S A. 1970 Mar;65(3):660–667. doi: 10.1073/pnas.65.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RABINOWITZ M., LIPMANN F. Reversible phosphate transfer between yolk phosphoprotein and adenosine triphosphate. J Biol Chem. 1960 Apr;235:1043–1050. [PubMed] [Google Scholar]
- Radke K., Martin G. S. Transformation by Rous sarcoma virus: effects of src gene expression on the synthesis and phosphorylation of cellular polypeptides. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5212–5216. doi: 10.1073/pnas.76.10.5212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richert N. D., Davies P. J., Jay G., Pastan I. H. Characterization of an immune complex kinase in immunoprecipitates of avian sarcoma virus-transformed fibroblasts. J Virol. 1979 Sep;31(3):696–706. doi: 10.1128/jvi.31.3.696-706.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sy J. In vitro degradation of guanosine 5'-diphosphate, 3'-diphosphate. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5529–5533. doi: 10.1073/pnas.74.12.5529. [DOI] [PMC free article] [PubMed] [Google Scholar]