Abstract
Injection of the alpha, beta-nonhydrolyzable GTP analog, guanosine 5'-[alpha, beta-methylene]triphosphate (pp[CH2]pG) into PtK2, A549, and Swiss 3T3 cells produced dramatic changes in the normal pattern of long radiating microtubules displayed by the cells before injection. Injection of pp[CH2]pG into cells growing in normal medium resulted in the formation of microtubule bundles resistant to depolymerization by Colcemid and calcium. Cells injected with pp[CH2]pG after incubation with Colcemid for 2 hr showed polymerization of tubulin into long wavy ribbons within 2 hr after injection. Removal of Colcemid 1 hr after the injection of pp[CH2]pG resulted in assembly of tubulin into short single randomly oriented microtubules. All cells injected with pp[CH2]pG showed impeded translocation and restriction or absence of intracellular movement. pp[CH2]pG also prevented the fragmentation of Golgi elements in A549 cells treated with Colcemid. Cells first treated with Colcemid and then injected with pp[CH2]pG failed to reassemble the Golgi elements after the removal of Colcemid. Cells in intimate membrane contact with cells injected with pp[CH2]pG showed similar changes in microtubule polymerization, cell movement, and organization of Golgi elements.
Full text
PDF![1938](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/393726/18f27e1d4f6d/pnas00633-0159.png)
![1939](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/393726/90c9345f23f4/pnas00633-0160.png)
![1940](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/393726/4a6e710748f4/pnas00633-0161.png)
![1941](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/393726/23b3bf5bfba7/pnas00633-0162.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berger E. G., Mandel T., Schilt U. Immunohistochemical localization of galactosyltransferase in human fibroblasts and HeLa cells. J Histochem Cytochem. 1981 Mar;29(3):364–370. doi: 10.1177/29.3.6787115. [DOI] [PubMed] [Google Scholar]
- Brinkley B. R., Fuller E. M., Highfield D. P. Cytoplasmic microtubules in normal and transformed cells in culture: analysis by tubulin antibody immunofluorescence. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4981–4985. doi: 10.1073/pnas.72.12.4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs M., Smith H., Taylor E. W. Tublin: nucleotide binding and enzymic activity. J Mol Biol. 1974 Nov 5;89(3):455–468. doi: 10.1016/0022-2836(74)90475-6. [DOI] [PubMed] [Google Scholar]
- Kilmartin J. V., Wright B., Milstein C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J Cell Biol. 1982 Jun;93(3):576–582. doi: 10.1083/jcb.93.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirschner M. W. Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo. J Cell Biol. 1980 Jul;86(1):330–334. doi: 10.1083/jcb.86.1.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margolis R. L., Wilson L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell. 1978 Jan;13(1):1–8. doi: 10.1016/0092-8674(78)90132-0. [DOI] [PubMed] [Google Scholar]
- OOSAWA F., KASAI M. A theory of linear and helical aggregations of macromolecules. J Mol Biol. 1962 Jan;4:10–21. doi: 10.1016/s0022-2836(62)80112-0. [DOI] [PubMed] [Google Scholar]
- Sandoval I. V., MacDonald E., Jameson J. L., Cuatrecasas P. Role of nucleotides in tubulin polymerization: effect of guanylyl 5'-methylenediphosphonate. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4881–4885. doi: 10.1073/pnas.74.11.4881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandoval I. V., Weber K. Guanasone 5'-(alpha,beta-methylene)triphosphate enhances specifically microtubule nucleation and stops the treadmill of tubulin protomers. J Biol Chem. 1980 Jul 25;255(14):6966–6974. [PubMed] [Google Scholar]
- Sandoval I. V., Weber K. Polymerization of tubulin in the presence of colchicine or podophyllotoxin. Formation of a ribbon structure induced by guanylyl-5'-methylene diphosphonate. J Mol Biol. 1979 Oct 15;134(1):159–172. doi: 10.1016/0022-2836(79)90418-2. [DOI] [PubMed] [Google Scholar]
- Thyberg J., Piasek A., Moskalewski S. Effects of colchicine on the Golgi complex and GERL of cultured rat peritoneal macrophages and epiphyseal chondrocytes. J Cell Sci. 1980 Oct;45:41–58. doi: 10.1242/jcs.45.1.41. [DOI] [PubMed] [Google Scholar]
- Wehland J., Osborn M., Weber K. Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5613–5617. doi: 10.1073/pnas.74.12.5613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisenberg R. C., Borisy G. G., Taylor E. W. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry. 1968 Dec;7(12):4466–4479. doi: 10.1021/bi00852a043. [DOI] [PubMed] [Google Scholar]
- Weisenberg R. C. Microtubule formation in vitro in solutions containing low calcium concentrations. Science. 1972 Sep 22;177(4054):1104–1105. doi: 10.1126/science.177.4054.1104. [DOI] [PubMed] [Google Scholar]
- Willingham M. C., Pastan I. The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM). Cell. 1978 Mar;13(3):501–507. doi: 10.1016/0092-8674(78)90323-9. [DOI] [PubMed] [Google Scholar]