Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 May 14;93(10):4897–4902. doi: 10.1073/pnas.93.10.4897

Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers.

J F Kukowska-Latallo 1, A U Bielinska 1, J Johnson 1, R Spindler 1, D A Tomalia 1, J R Baker Jr 1
PMCID: PMC39376  PMID: 8643500

Abstract

Starburst polyamidoamine dendrimers are a new class of synthetic polymers with unique structural and physical characteristics. These polymers were investigated for the ability to bind DNA and enhance DNA transfer and expression in a variety of mammalian cell lines. Twenty different types of polyamidoamine dendrimers were synthesized, and the polymer structure was confirmed using well-defined analytical techniques. The efficiency of plasmid DNA transfection using dendrimers was examined using two reporter gene systems: firefly luciferase and bacterial beta-galactosidase. The transfections were performed using various dendrimers, and levels of expression of the reporter protein were determined. Highly efficient transfection of a broad range of eukaryotic cells and cell lines was achieved with minimal cytotoxicity using the DNA/dendrimer complexes. However, the ability to transfect cells was restricted to certain types of dendrimers and in some situations required the presence of additional compounds, such as DEAE-dextran, that appeared to alter the nature of the complex. A few cell lines demonstrated enhanced transfection with the addition of chloroquine, indicating endosomal localization of the complexes. The capability of a dendrimer to transfect cells appeared to depend on the size, shape, and number of primary amino groups on the surface of the polymer. However, the specific dendrimer most efficient in achieving transfection varied between different types of cells. These studies demonstrate that Starburst dendrimers can transfect a wide variety of cell types in vitro and offer an efficient method for producing permanently transfected cell lines.

Full text

PDF
4897

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akli S., Caillaud C., Vigne E., Stratford-Perricaudet L. D., Poenaru L., Perricaudet M., Kahn A., Peschanski M. R. Transfer of a foreign gene into the brain using adenovirus vectors. Nat Genet. 1993 Mar;3(3):224–228. doi: 10.1038/ng0393-224. [DOI] [PubMed] [Google Scholar]
  2. Alam J., Cook J. L. Reporter genes: application to the study of mammalian gene transcription. Anal Biochem. 1990 Aug 1;188(2):245–254. doi: 10.1016/0003-2697(90)90601-5. [DOI] [PubMed] [Google Scholar]
  3. Andreason G. L., Evans G. A. Introduction and expression of DNA molecules in eukaryotic cells by electroporation. Biotechniques. 1988 Jul-Aug;6(7):650–660. [PubMed] [Google Scholar]
  4. Barth R. F., Adams D. M., Soloway A. H., Alam F., Darby M. V. Boronated starburst dendrimer-monoclonal antibody immunoconjugates: evaluation as a potential delivery system for neutron capture therapy. Bioconjug Chem. 1994 Jan-Feb;5(1):58–66. doi: 10.1021/bc00025a008. [DOI] [PubMed] [Google Scholar]
  5. Chowdhury J. R., Grossman M., Gupta S., Chowdhury N. R., Baker J. R., Jr, Wilson J. M. Long-term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR-deficient rabbits. Science. 1991 Dec 20;254(5039):1802–1805. doi: 10.1126/science.1722351. [DOI] [PubMed] [Google Scholar]
  6. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fréchet J. M. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science. 1994 Mar 25;263(5154):1710–1715. doi: 10.1126/science.8134834. [DOI] [PubMed] [Google Scholar]
  8. Gorman C. M., Merlino G. T., Willingham M. C., Pastan I., Howard B. H. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6777–6781. doi: 10.1073/pnas.79.22.6777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  10. Haensler J., Szoka F. C., Jr Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem. 1993 Sep-Oct;4(5):372–379. doi: 10.1021/bc00023a012. [DOI] [PubMed] [Google Scholar]
  11. Johnson L. G. Gene therapy for cystic fibrosis. Chest. 1995 Feb;107(2 Suppl):77S–83S. doi: 10.1378/chest.107.2_supplement.77s. [DOI] [PubMed] [Google Scholar]
  12. Lehn P. Principes généraux de la production et de l'utilisation des vecteurs rétroviraux. Pathol Biol (Paris) 1993 Oct;41(8):658–662. [PubMed] [Google Scholar]
  13. Lopata M. A., Cleveland D. W., Sollner-Webb B. High level transient expression of a chloramphenicol acetyl transferase gene by DEAE-dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shock treatment. Nucleic Acids Res. 1984 Jul 25;12(14):5707–5717. doi: 10.1093/nar/12.14.5707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MacGregor G. R., Caskey C. T. Construction of plasmids that express E. coli beta-galactosidase in mammalian cells. Nucleic Acids Res. 1989 Mar 25;17(6):2365–2365. doi: 10.1093/nar/17.6.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Singh P., Moll F., 3rd, Lin S. H., Ferzli C., Yu K. S., Koski R. K., Saul R. G., Cronin P. Starburst dendrimers: enhanced performance and flexibility for immunoassays. Clin Chem. 1994 Sep;40(9):1845–1849. [PubMed] [Google Scholar]
  16. Wolff J. A., Malone R. W., Williams P., Chong W., Acsadi G., Jani A., Felgner P. L. Direct gene transfer into mouse muscle in vivo. Science. 1990 Mar 23;247(4949 Pt 1):1465–1468. doi: 10.1126/science.1690918. [DOI] [PubMed] [Google Scholar]
  17. Yang N. S., Burkholder J., Roberts B., Martinell B., McCabe D. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9568–9572. doi: 10.1073/pnas.87.24.9568. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES