Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Apr;80(8):2314–2317. doi: 10.1073/pnas.80.8.2314

Recombination involving transposable elements: role of target molecule replication in Tn1 delta Ap-mediated replicon fusion.

C J Muster, J A Shapiro, L A MacHattie
PMCID: PMC393810  PMID: 6300910

Abstract

Donor DNA molecules carrying Tn1 or Tn3 deletion mutants do not need to replicate in order to participate in replicon fusion recombination events during which the Tn1/Tn3 element is duplicated. We have assayed Tn1 delta Ap-mediated replicon fusion events involving plasmid R388 and the bacteriophage lambda-derived plasmid p lambda CM, and we find that the role of the recipient molecule is distinct. When p lambda CM carries Tn1 delta Ap, replicon fusion occurs in more than 1% of all cells assayed, whether or not p lambda CM::Tn1 delta Ap can replicate. In contrast, when R388 carries Tn1 delta Ap, replicon fusion occurs only when the p lambda CM target can replicate. Blocks to p lambda CM replication by prophage repressor or amber mutations of the O and P cistrons reduce replicon fusion so that it occurs in less than 1 out of 10(5) cells assayed.

Full text

PDF
2314

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Castellazzi M., Brachet P., Eisen H. Isolation and characterization of deletions in bacteriophage lambda residing as prophage in E. coli K 12. Mol Gen Genet. 1972;117(3):211–218. doi: 10.1007/BF00271648. [DOI] [PubMed] [Google Scholar]
  2. Faelen M., Toussaint A., De Lafonteyne J. Model for the enchancement of lambde-gal integration into partially induced Mu-1 lysogens. J Bacteriol. 1975 Mar;121(3):873–882. doi: 10.1128/jb.121.3.873-882.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fitts R. A., Taylor A. L. Integration of bacteriophage Mu at host chromosomal replication forks during lytic development. Proc Natl Acad Sci U S A. 1980 May;77(5):2801–2805. doi: 10.1073/pnas.77.5.2801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Galas D. J., Chandler M. On the molecular mechanisms of transposition. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4858–4862. doi: 10.1073/pnas.78.8.4858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grindley N. D., Sherratt D. J. Sequence analysis at IS1 insertion sites: models for transposition. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1257–1261. doi: 10.1101/sqb.1979.043.01.142. [DOI] [PubMed] [Google Scholar]
  6. Isberg R. R., Syvanen M. DNA gyrase is a host factor required for transposition of Tn5. Cell. 1982 Aug;30(1):9–18. doi: 10.1016/0092-8674(82)90006-x. [DOI] [PubMed] [Google Scholar]
  7. Kleckner N., Chan R. K., Tye B. K., Botstein D. Mutagenesis by insertion of a drug-resistance element carrying an inverted repetition. J Mol Biol. 1975 Oct 5;97(4):561–575. doi: 10.1016/s0022-2836(75)80059-3. [DOI] [PubMed] [Google Scholar]
  8. Kleckner N., Signer E. R. Genetic characterization of plasmid formation by N- mutants of bacteriophage lambda. Virology. 1977 Jun 1;79(1):160–173. doi: 10.1016/0042-6822(77)90342-7. [DOI] [PubMed] [Google Scholar]
  9. Kretschmer P. J., Cohen S. N. Effect of temperature on translocation frequency of the Tn3 element. J Bacteriol. 1979 Aug;139(2):515–519. doi: 10.1128/jb.139.2.515-519.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Muster C. J., MacHattie L. A., Shapiro J. A. p lambda CM system: observations on the roles of transposable elements in formation and breakdown of plasmids derived from bacteriophage lambda replicons. J Bacteriol. 1983 Feb;153(2):976–990. doi: 10.1128/jb.153.2.976-990.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Muster C. J., Shapiro J. A. Recombination involving transposable elements: on replicon fusion. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):239–242. doi: 10.1101/sqb.1981.045.01.036. [DOI] [PubMed] [Google Scholar]
  12. Paolozzi L., Jucker R., Calef E. Mechanism of phage Mu-1 integration: nalidixic acid treatment causes clustering of Mu-1-induced mutations near replication origin. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4940–4943. doi: 10.1073/pnas.75.10.4940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robinson M. K., Bennett P. M., Richmond M. H. Inhibition of TnA translocation by TnA. J Bacteriol. 1977 Jan;129(1):407–414. doi: 10.1128/jb.129.1.407-414.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shapiro J. A. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1933–1937. doi: 10.1073/pnas.76.4.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Skalka A. M. DNA replication--bacteriophage lambda. Curr Top Microbiol Immunol. 1977;78:201–237. [PubMed] [Google Scholar]
  16. Wallace L. J., Ward J. M., Bennett P. M., Robinson M. K., Richmond M. H. Transposition immunity. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):183–188. doi: 10.1101/sqb.1981.045.01.029. [DOI] [PubMed] [Google Scholar]
  17. Ward J. M., Grinsted J. Mapping of functions in the R-plasmid R388 by examination of deletion mutants generated in vitro. Gene. 1978 Apr;3(2):87–95. doi: 10.1016/0378-1119(78)90053-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES