Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Apr;80(8):2346–2350. doi: 10.1073/pnas.80.8.2346

Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments.

R S Fujinami, M B Oldstone, Z Wroblewska, M E Frankel, H Koprowski
PMCID: PMC393817  PMID: 6300911

Abstract

Using monoclonal antibodies, we demonstrate that the phosphoprotein of measles virus and a protein of herpes simplex virus type 1 crossreact with an intermediate filament protein of human cells. This intermediate filament protein, probably vimentin, has a molecular weight of 52,000, whereas the molecular weights of the measles viral phosphoprotein and the herpes virus protein are 70,000 and 146,000, respectively. Crossreactivity was shown by immunofluorescent staining of infected and uninfected cells and by immunoblotting. The monoclonal antibody against measles virus phosphoprotein did not react with herpes simplex virus protein and vice versa, indicating that these monoclonal antibodies recognize different antigenic determinants on the intermediate filament molecule. The significance of these results in explaining the appearance of autoantibodies during virus infections in humans is discussed.

Full text

PDF
2346

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bird A. G., Britton S. A new approach to the study of human B lymphocyte function using an indirect plaque assay and a direct B cell activator. Immunol Rev. 1979;45:41–67. doi: 10.1111/j.1600-065x.1979.tb00272.x. [DOI] [PubMed] [Google Scholar]
  2. Blose S. H., Matsumura F., Lin J. J. Structure of vimentin 10-nm filaments probed with a monoclonal antibody that recognizes a common antigenic determinant on vimentin and tropomyosin. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):455–463. doi: 10.1101/sqb.1982.046.01.042. [DOI] [PubMed] [Google Scholar]
  3. Bromberg J. S., Lake P., Brunswick M. Viral antigens act as helper determinants for antibody responses to cell surface antigens. J Immunol. 1982 Aug;129(2):683–688. [PubMed] [Google Scholar]
  4. Buchmeier M. J., Lewicki H. A., Tomori O., Oldstone M. B. Monoclonal antibodies to lymphocytic choriomeningitis and pichinde viruses: generation, characterization, and cross-reactivity with other arenaviruses. Virology. 1981 Aug;113(1):73–85. doi: 10.1016/0042-6822(81)90137-9. [DOI] [PubMed] [Google Scholar]
  5. Butchko G. M., Armstrong R. B., Martin W. J., Ennis F. A. Influenza A viruses of the H2N2 subtype are lymphocyte mitogens. Nature. 1978 Jan 5;271(5640):66–67. doi: 10.1038/271066a0. [DOI] [PubMed] [Google Scholar]
  6. Cafruny W. A., Plagemann P. G. Immune response to lactate dehydrogenase-elevating virus: isolation of infectious virus-immunoglobulin G complexes and quantitation of specific antiviral immunoglobulin G response in wild-type and nude mice. Infect Immun. 1982 Sep;37(3):1001–1006. doi: 10.1128/iai.37.3.1001-1006.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dighiero G., Guilbert B., Avrameas S. Naturally occurring antibodies against nine common antigens in humans sera. II. High incidence of monoclonal Ig exhibiting antibody activity against actin and tubulin and sharing antibody specificities with natural antibodies. J Immunol. 1982 Jun;128(6):2788–2792. [PubMed] [Google Scholar]
  8. Dulbecco R., Unger M., Bologna M., Battifora H., Syka P., Okada S. Cross-reactivity between Thy-1 and a component of intermediate filaments demonstrated using a monoclonal antibody. Nature. 1981 Aug 20;292(5825):772–774. doi: 10.1038/292772a0. [DOI] [PubMed] [Google Scholar]
  9. Fong S., Tsoukas C. D., Frincke L. A., Lawrance S. K., Holbrook T. L., Vaughan J. H., Carson D. A. Age-associated changes in Epstein-Barr virus-induced human lymphocyte autoantibody responses. J Immunol. 1981 Mar;126(3):910–914. [PubMed] [Google Scholar]
  10. Franke W. W., Schmid E., Grund C., Geiger B. Intermediate filament proteins in nonfilamentous structures: transient disintegration and inclusion of subunit proteins in granular aggregates. Cell. 1982 Aug;30(1):103–113. doi: 10.1016/0092-8674(82)90016-2. [DOI] [PubMed] [Google Scholar]
  11. Fujinami R. S., Oldstone M. B. Failure to cleave measles virus fusion protein in lymphoid cells. J Exp Med. 1981 Nov 1;154(5):1489–1499. doi: 10.1084/jem.154.5.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fujinami R. S., Sissons J. G., Oldstone M. B. Immune reactive measles virus polypeptides on the cell's surface: turnover and relationship of the glycoproteins to each other and to HLA determinants. J Immunol. 1981 Sep;127(3):935–940. [PubMed] [Google Scholar]
  13. Goodman-Snitkoff G. W., McSharry J. J. Activation of mouse lymphocytes by vesicular stomatitis virus. J Virol. 1980 Sep;35(3):757–765. doi: 10.1128/jvi.35.3.757-765.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goodman-Snitkoff G., Mannino R. J., McSharry J. J. The glycoprotein isolated from vesicular stomatitis virus is mitogenic for mouse B lymphocytes. J Exp Med. 1981 Jun 1;153(6):1489–1502. doi: 10.1084/jem.153.6.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guilbert B., Dighiero G., Avrameas S. Naturally occurring antibodies against nine common antigens in human sera. I. Detection, isolation and characterization. J Immunol. 1982 Jun;128(6):2779–2787. [PubMed] [Google Scholar]
  16. Haire M. Fibrillar anti-cellular antibody associated with mumps and measles infection. Clin Exp Immunol. 1972 Nov;12(3):335–341. [PMC free article] [PubMed] [Google Scholar]
  17. Kahn C. R. Autoantibodies to the insulin receptor: clinical and molecular aspects. Fed Proc. 1979 Nov;38(12):2607–2609. [PubMed] [Google Scholar]
  18. Kirchner H., Darai G., Hirt H. M., Keyssner K., Munk K. In vitro mitogenic stimulation of murine spleen cells by herpes simplex virus. J Immunol. 1978 Feb;120(2):641–645. [PubMed] [Google Scholar]
  19. Koprowski H., Gerhard W., Croce C. M. Production of antibodies against influenza virus by somatic cell hybrids between mouse myeloma and primed spleen cells. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2985–2988. doi: 10.1073/pnas.74.7.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koprowski H. Unlearning about latency. Med Microbiol Immunol. 1982;170(4):209–219. doi: 10.1007/BF02123311. [DOI] [PubMed] [Google Scholar]
  21. Kurki P., Virtanen I., Stenman S., Linder E. Characterization of human smooth muscle autoantibodies reacting with cytoplasmic intermediate filaments. Clin Immunol Immunopathol. 1978 Dec;11(4):379–387. doi: 10.1016/0090-1229(78)90165-4. [DOI] [PubMed] [Google Scholar]
  22. Lane D., Koprowski H. Molecular recognition and the future of monoclonal antibodies. Nature. 1982 Mar 18;296(5854):200–202. doi: 10.1038/296200a0. [DOI] [PubMed] [Google Scholar]
  23. Lindenmann J., Klein P. A. Viral oncolysis: increased immunogenicity of host cell antigen associated with influenza virus. J Exp Med. 1967 Jul 1;126(1):93–108. doi: 10.1084/jem.126.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Linder E., Kurki P., Andersson L. C. Autoantibody to "intermediate filament" in infectious mononucleosis. Clin Immunol Immunopathol. 1979 Dec;14(4):411–417. doi: 10.1016/0090-1229(79)90093-x. [DOI] [PubMed] [Google Scholar]
  25. Mochizuki D., Hedrick S., Watson J., Kingsbury D. T. The interaction of Herpes Simplex Virus with murine lymphocytes. I. Mitogenic properties of herpes simplex virus. J Exp Med. 1977 Dec 1;146(6):1500–1510. doi: 10.1084/jem.146.6.1500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pruss R. M., Mirsky R., Raff M. C., Thorpe R., Dowding A. J., Anderton B. H. All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody. Cell. 1981 Dec;27(3 Pt 2):419–428. doi: 10.1016/0092-8674(81)90383-4. [DOI] [PubMed] [Google Scholar]
  27. Sotelo J., Gibbs C. J., Jr, Gajdusek D. C. Autoantibodies against axonal neurofilaments in patients with Kuru and Creutzfeldt-Jakob disease. Science. 1980 Oct 10;210(4466):190–193. doi: 10.1126/science.6997994. [DOI] [PubMed] [Google Scholar]
  28. Toh B. H., Yildiz A., Sotelo J., Osung O., Holborow E. J., Kanakoudi F., Small J. V. Viral infections and IgM autoantibodies to cytoplasmic intermediate filaments. Clin Exp Immunol. 1979 Jul;37(1):76–82. [PMC free article] [PubMed] [Google Scholar]
  29. Tonietti G., Oldstone M. B., Dixon F. J. The effect of induced chronic viral infections on the immunologic diseases of New Zealand mice. J Exp Med. 1970 Jul 1;132(1):89–109. doi: 10.1084/jem.132.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wilcox K. W., Kohn A., Sklyanskaya E., Roizman B. Herpes simplex virus phosphoproteins. I. Phosphate cycles on and off some viral polypeptides and can alter their affinity for DNA. J Virol. 1980 Jan;33(1):167–182. doi: 10.1128/jvi.33.1.167-182.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wood J. N., Hudson L., Jessell T. M., Yamamoto M. A monoclonal antibody defining antigenic determinants on subpopulations of mammalian neurones and Trypanosoma cruzi parasites. Nature. 1982 Mar 4;296(5852):34–38. doi: 10.1038/296034a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES