Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Apr;80(8):2395–2399. doi: 10.1073/pnas.80.8.2395

Time course of the increase in the myocardial slow inward current after a photochemically generated concentration jump of intracellular cAMP.

J Nargeot, J M Nerbonne, J Engels, H A Lester
PMCID: PMC393827  PMID: 6300914

Abstract

Voltage-clamped atrial trabeculae from bullfrog hearts were exposed to membrane-permeant photolyzable o-nitrobenzyl esters of cAMP and cGMP. UV flashes produced intracellular concentration jumps of cAMP or cGMP. With the cAMP derivative, flashes resulted in an increased slow inward current (Isi), producing a broadened action potential. The Isi reached a maximum 10-30 sec after the flash and decreased over the next 60-300 sec. The first increases were observable within 150 msec; this value is an upper limit imposed by the instrumentation. Responses to flashes lasted longer at higher drug concentrations and in the presence of the phosphodiesterase inhibitor papaverine; effects of flashes developed and decreased faster at higher temperature. Although the amplitude of the Isi was increased, its waveform and voltage sensitivity were not affected. Intracellular concentration jumps of cAMP failed to affect the muscarinic K+ conductance. There were no observable effects of cGMP concentration jumps. The data confirm (i) that cAMP regulates the Isi and (ii) that the 5- to 10-sec delay between application of beta-agonists and the onset of positive inotropic effects, observed in previous studies, has been correctly ascribed to events prior to the interaction between cAMP and protein kinase.

Full text

PDF
2395

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beavo J. A., Bechtel P. J., Krebs E. G. Activation of protein kinase by physiological concentrations of cyclic AMP. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3580–3583. doi: 10.1073/pnas.71.9.3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brady A. J. Physiological appraisial of the actions of catecholamines on myocardial contractions. Ann N Y Acad Sci. 1967 Feb 10;139(3):661–672. doi: 10.1111/j.1749-6632.1967.tb41236.x. [DOI] [PubMed] [Google Scholar]
  3. Carmeliet E., Vereecke J. Adrenaline and the plateau phase of the cardiac action potential. Importance of Ca++, Na+ and K+ conductance. Pflugers Arch. 1969;313(4):300–315. doi: 10.1007/BF00593955. [DOI] [PubMed] [Google Scholar]
  4. Cassel D., Levkovitz H., Selinger Z. The regulatory GTPase cycle of turkey erythrocyte adenylate cyclase. J Cyclic Nucleotide Res. 1977 Dec;3(6):393–406. [PubMed] [Google Scholar]
  5. Engels J., Schlaeger E. J. Synthesis, structure, and reactivity of adenosine cyclic 3',5'-phosphate benzyl triesters. J Med Chem. 1977 Jul;20(7):907–911. doi: 10.1021/jm00217a008. [DOI] [PubMed] [Google Scholar]
  6. England P. J. Studies on the phosphorylation of the inhibitory subunit of troponin during modification of contraction in perfused rat heart. Biochem J. 1976 Nov 15;160(2):295–304. doi: 10.1042/bj1600295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garnier D., Nargeot J., Ojeda C., Rougier O. The action of acetylcholine on background conductance in frog atrial trabeculae. J Physiol. 1978 Jan;274:381–396. doi: 10.1113/jphysiol.1978.sp012154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garnier D., Rougier O., Gargouïl Y. M., Coraboeuf E. Analyse électrophysiologique du plateau des réponses myocardiques, mise en évidence d'un courant lent entrant en absence d'ions bivalents. Pflugers Arch. 1969;313(4):321–342. doi: 10.1007/BF00593957. [DOI] [PubMed] [Google Scholar]
  9. Giles W., Noble S. J. Changes in membrane currents in bullfrog atrium produced by acetylcholine. J Physiol. 1976 Sep;261(1):103–123. doi: 10.1113/jphysiol.1976.sp011550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hayes J. S., Brunton L. L., Mayer S. E. Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J Biol Chem. 1980 Jun 10;255(11):5113–5119. [PubMed] [Google Scholar]
  11. Ikemoto Y., Goto M. Effects of ACh on slow inward current and tension components of the bullfrog atrium. J Mol Cell Cardiol. 1977 Apr;9(4):313–326. doi: 10.1016/s0022-2828(77)80037-0. [DOI] [PubMed] [Google Scholar]
  12. Jakobs K. H., Aktories K., Schultz G. GTP-dependent inhibition of cardiac adenylate cyclase by muscarinic cholinergic agonists. Naunyn Schmiedebergs Arch Pharmacol. 1979 Dec;310(2):113–119. doi: 10.1007/BF00500275. [DOI] [PubMed] [Google Scholar]
  13. Kaplan J. H., Forbush B., 3rd, Hoffman J. F. Rapid photolytic release of adenosine 5'-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry. 1978 May 16;17(10):1929–1935. doi: 10.1021/bi00603a020. [DOI] [PubMed] [Google Scholar]
  14. Khoo J. C., Gill G. N. Comparison of cyclic nucleotide specificity of guanosine 3',5'-monophosphate-dependent protein kinase and adenosine 3',5'-monophosphate-dependent protein kinase. Biochim Biophys Acta. 1979 Apr 18;584(1):21–32. doi: 10.1016/0304-4165(79)90231-9. [DOI] [PubMed] [Google Scholar]
  15. Kirchberger M. A., Tada M., Katz A. M. Adenosine 3':5'-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J Biol Chem. 1974 Oct 10;249(19):6166–6173. [PubMed] [Google Scholar]
  16. Korth M., Engels J. The effects of adenosine- and guanosine 3',5'-phosphoric acid benzyl esters on guinea-pig ventricular myocardium. Naunyn Schmiedebergs Arch Pharmacol. 1979 Dec;310(2):103–111. doi: 10.1007/BF00500274. [DOI] [PubMed] [Google Scholar]
  17. Lester H. A., Nerbonne J. M. Physiological and pharmacological manipulations with light flashes. Annu Rev Biophys Bioeng. 1982;11:151–175. doi: 10.1146/annurev.bb.11.060182.001055. [DOI] [PubMed] [Google Scholar]
  18. Linden J., Brooker G. The questionable role of cyclic guanosine 3':5'-monophosphate in heart. Biochem Pharmacol. 1979 Dec 1;28(23):3351–3360. doi: 10.1016/0006-2952(79)90072-8. [DOI] [PubMed] [Google Scholar]
  19. MURAD F., CHI Y. M., RALL T. W., SUTHERLAND E. W. Adenyl cyclase. III. The effect of catecholamines and choline esters on the formation of adenosine 3',5'-phosphate by preparations from cardiac muscle and liver. J Biol Chem. 1962 Apr;237:1233–1238. [PubMed] [Google Scholar]
  20. McCray J. A., Herbette L., Kihara T., Trentham D. R. A new approach to time-resolved studies of ATP-requiring biological systems; laser flash photolysis of caged ATP. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7237–7241. doi: 10.1073/pnas.77.12.7237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McCullough T. E., Walsh D. A. Phosphorylation and dephosphorylation of phosphorylase kinase in the perfused rat heart. J Biol Chem. 1979 Aug 10;254(15):7345–7352. [PubMed] [Google Scholar]
  22. Nargeot J., Garnier D., Rougier O. Analysis of the negative inotropic effect of acetylcholine on frog atrial fibres. J Physiol (Paris) 1981 Mar;77(8):829–843. [PubMed] [Google Scholar]
  23. Nargeot J., Lester H. A., Birdsall N. J., Stockton J., Wassermann N. H., Erlanger B. F. A photoisomerizable muscarinic antagonist. Studies of binding and of conductance relaxations in frog heart. J Gen Physiol. 1982 Apr;79(4):657–678. doi: 10.1085/jgp.79.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Niedergerke R., Page S. Analysis of catecholamine effects in single atrial trabeculae of the frog heart. Proc R Soc Lond B Biol Sci. 1977 Jun 15;197(1128):333–362. doi: 10.1098/rspb.1977.0074. [DOI] [PubMed] [Google Scholar]
  25. Osterrieder W., Brum G., Hescheler J., Trautwein W., Flockerzi V., Hofmann F. Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature. 1982 Aug 5;298(5874):576–578. doi: 10.1038/298576a0. [DOI] [PubMed] [Google Scholar]
  26. Reimann E. M., Walsh D. A., Krebs E. G. Purification and properties of rabbit skeletal muscle adenosine 3',5'-monophosphate-dependent protein kinases. J Biol Chem. 1971 Apr 10;246(7):1986–1995. [PubMed] [Google Scholar]
  27. Reuter H., Scholz H. A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J Physiol. 1977 Jan;264(1):17–47. doi: 10.1113/jphysiol.1977.sp011656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reuter H., Scholz H. The regulation of the calcium conductance of cardiac muscle by adrenaline. J Physiol. 1977 Jan;264(1):49–62. doi: 10.1113/jphysiol.1977.sp011657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reuter H., Stevens C. F., Tsien R. W., Yellen G. Properties of single calcium channels in cardiac cell culture. Nature. 1982 Jun 10;297(5866):501–504. doi: 10.1038/297501a0. [DOI] [PubMed] [Google Scholar]
  30. Rougier O., Vassort G., Stämpfli R. Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;301(2):91–108. doi: 10.1007/BF00362729. [DOI] [PubMed] [Google Scholar]
  31. Schneider J. A., Sperelakis N. Slow Ca2+ and Na+ responses induced by isoproterenol and methylxanthines in isolated perfused guinea pig hearts exposed to elevated K+. J Mol Cell Cardiol. 1975 Apr;7(4):249–273. doi: 10.1016/0022-2828(75)90084-x. [DOI] [PubMed] [Google Scholar]
  32. Tolkovsky A. M., Levitzki A. Mode of coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry. 1978 Sep 5;17(18):3795–3795. doi: 10.1021/bi00611a020. [DOI] [PubMed] [Google Scholar]
  33. Trautwein W., Taniguchi J., Noma A. The effect of intracellular cyclic nucleotides and calcium on the action potential and acetylcholine response of isolated cardiac cells. Pflugers Arch. 1982 Feb;392(4):307–314. doi: 10.1007/BF00581624. [DOI] [PubMed] [Google Scholar]
  34. Tsien R. W. Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibres. Nat New Biol. 1973 Sep 26;245(143):120–122. doi: 10.1038/newbio245120a0. [DOI] [PubMed] [Google Scholar]
  35. Tsien R. W., Giles W., Greengard P. Cyclic AMP mediates the effects of adrenaline on cardiac purkinje fibres. Nat New Biol. 1972 Dec 6;240(101):181–183. doi: 10.1038/newbio240181a0. [DOI] [PubMed] [Google Scholar]
  36. Tsien R. W., Weingart R. Inotropic effect of cyclic AMP in calf ventricular muscle studied by a cut end method. J Physiol. 1976 Aug;260(1):117–141. doi: 10.1113/jphysiol.1976.sp011507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vassort G., Rougier O., Garnier D., Sauviat M. P., Coraboeuf E., Gargouïl Y. M. Effects of adrenaline on membrane inward currents during the cardiac action potential. Pflugers Arch. 1969;309(1):70–81. doi: 10.1007/BF00592283. [DOI] [PubMed] [Google Scholar]
  38. Vogel S., Sperelakis N. Induction of slow action potentials by microiontophoresis of cyclic AMP into heart cells. J Mol Cell Cardiol. 1981 Jan;13(1):51–64. doi: 10.1016/0022-2828(81)90228-5. [DOI] [PubMed] [Google Scholar]
  39. Walsh D. A., Clippinger M. S., Sivaramakrishnan S., McCullough T. E. Cyclic adenosine monophosphate dependent and independent phosphorylation of sarcolemma membrane proteins in perfused rat heart. Biochemistry. 1979 Mar 6;18(5):871–877. doi: 10.1021/bi00572a021. [DOI] [PubMed] [Google Scholar]
  40. Yamasaki Y., Fujiwara M., Toda N. Effects of intracellularly applied cyclic 3',5'-adenosine monophosphate and dibutyryl cyclic 3',5'-adenosine monophosphate on the electrical activity of sinoatrial nodal cells of the rabbit. J Pharmacol Exp Ther. 1974 Jul;190(1):15–20. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES