Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 May;80(9):2472–2476. doi: 10.1073/pnas.80.9.2472

Antigenicity of metallothionein.

D R Winge, J S Garvey
PMCID: PMC393847  PMID: 6189123

Abstract

The antigenic determinants of vertebrate metallothionein have been determined by a competitive-binding double-antibody radioimmunoassay to consist of two immunologically dominant regions in the NH2-terminal domain (residues 1-29). The COOH-terminal domain (residues 30-61) exhibited trivial immunoreactivity in competitive binding assays. The tryptic peptide encompassing residues 1-25 of the molecule competed with 125I-labeled metallothionein as effectively as the native protein. The crossreactivity was unaffected whether the protein was native or denatured. The antigenicity is thus independent of the degree of folding of the protein and, although all antigenic sites depend to some degree on conformation or topography, this favors a sequential (or continuous) rather than a discontinuous nature of the determinants. The two regions in metallothionein that appear to be important in the interaction of the molecule with the antisera include the NH2-terminal acetylated methionine and the cluster of lysines in the sequence from residues 20-25. These regions are homologous in the various vertebrate metallothioneins known to crossreact with rabbit anti-rat metallothionein antiserum. This implies that the induction in rabbits of antiserum to rat metallothionein is an autoimmune phenomenon. The results support the two-cluster model of metallothionein and are compatible with predictions of sites of antigenicity based on regions of high hydrophilicity.

Full text

PDF
2472

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atassi M. Z. Antigenic structure of myoglobin: the complete immunochemical anatomy of a protein and conclusions relating to antigenic structures of proteins. Immunochemistry. 1975 May;12(5):423–438. doi: 10.1016/0019-2791(75)90010-5. [DOI] [PubMed] [Google Scholar]
  2. Atassi M. Z. Precise determination of the entire antigenic structure of lysozyme: molecular features of protein antigenic structures and potential of "surface-simulation" synthesis--a powerful new concept for protein binding sites. Immunochemistry. 1978 Dec;15(12):909–936. doi: 10.1016/0161-5890(78)90126-8. [DOI] [PubMed] [Google Scholar]
  3. Berzofsky J. A., Buckenmeyer G. K., Hicks G., Gurd F. R., Feldmann R. J., Minna J. Topographic antigenic determinants recognized by monoclonal antibodies to sperm whale myoglobin. J Biol Chem. 1982 Mar 25;257(6):3189–3198. [PubMed] [Google Scholar]
  4. Boulanger Y., Armitage I. M., Miklossy K. A., Winge D. R. 113Cd NMR study of a metallothionein fragment. Evidence for a two-domain structure. J Biol Chem. 1982 Nov 25;257(22):13717–13719. [PubMed] [Google Scholar]
  5. Boyd W. C. The mechanism of specific precipitation: another look. Experientia. 1973 Dec;29(12):1565–1566. doi: 10.1007/BF01943920. [DOI] [PubMed] [Google Scholar]
  6. Brady F. O., Panemangalore M., Day F. A., Fiskin A. M., Peterson G. In vivo and ex vivo induction of rat liver metallothionein. Experientia Suppl. 1979;34:261–271. doi: 10.1007/978-3-0348-6493-0_19. [DOI] [PubMed] [Google Scholar]
  7. Briggs R. W., Armitage I. M. Evidence for site-selective metal binding in calf liver metallothionein. J Biol Chem. 1982 Feb 10;257(3):1259–1262. [PubMed] [Google Scholar]
  8. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  9. Bühler R. H., Kägi J. H. Spectroscopic properties of zinc-metallothionein. Experientia Suppl. 1979;34:211–220. doi: 10.1007/978-3-0348-6493-0_14. [DOI] [PubMed] [Google Scholar]
  10. Cousins R. J. Synthesis and degradation of liver metallothionein. Experientia Suppl. 1979;34:293–301. doi: 10.1007/978-3-0348-6493-0_22. [DOI] [PubMed] [Google Scholar]
  11. Dreesman G. R., Sanchez Y., Ionescu-Matiu I., Sparrow J. T., Six H. R., Peterson D. L., Hollinger F. B., Melnick J. L. Antibody to hepatitis B surface antigen after a single inoculation of uncoupled synthetic HBsAg peptides. Nature. 1982 Jan 14;295(5845):158–160. doi: 10.1038/295158a0. [DOI] [PubMed] [Google Scholar]
  12. East I. J., Hurrell J. G., Todd P. E., Leach S. J. Antigenic specificity of monoclonal antibodies to human myoglobin. J Biol Chem. 1982 Mar 25;257(6):3199–3202. [PubMed] [Google Scholar]
  13. East I. J., Todd P. E., Leach S. J. On topographic antigenic determinants in myoglobins. Mol Immunol. 1980 Apr;17(4):519–525. doi: 10.1016/0161-5890(80)90091-7. [DOI] [PubMed] [Google Scholar]
  14. Galdes A., Hill H. A., Kägi J. H., Vasak M., Bremner I., Young B. W. The 1H N.M.R. spectra of metallothioneins. Experientia Suppl. 1979;34:241–248. doi: 10.1007/978-3-0348-6493-0_17. [DOI] [PubMed] [Google Scholar]
  15. Garvey J. S., Vander Mallie R. J., Chang C. C. Radioimmunoassay of metallothioneins. Methods Enzymol. 1982;84:121–138. doi: 10.1016/0076-6879(82)84011-1. [DOI] [PubMed] [Google Scholar]
  16. Hopp T. P., Woods K. R. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3824–3828. doi: 10.1073/pnas.78.6.3824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huang I. Y., Kimura M., Hata A., Tsunoo H., Yoshida A. Complete amino acid sequence of mouse liver metallothionein-II. J Biochem. 1981 Jun;89(6):1839–1845. doi: 10.1093/oxfordjournals.jbchem.a133385. [DOI] [PubMed] [Google Scholar]
  18. Huang I. Y., Yoshida A. Mouse liver metallothioneins. Complete amino acid sequence of metallothionein-I. J Biol Chem. 1977 Nov 25;252(22):8217–8221. [PubMed] [Google Scholar]
  19. KAGI J. H., VALEE B. L. Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex. J Biol Chem. 1960 Dec;235:3460–3465. [PubMed] [Google Scholar]
  20. KAGI J. H., VALLEE B. L. Metallothionein: a cadmium and zinc-containign protein from equine renal cortex. II. Physico-chemical properties. J Biol Chem. 1961 Sep;236:2435–2442. [PubMed] [Google Scholar]
  21. Karin M., Herschman H. R. Characterization of the metallothioneins induced in HeLa cells by dexamethasone and zinc. Eur J Biochem. 1980 Jun;107(2):395–401. doi: 10.1111/j.1432-1033.1980.tb06042.x. [DOI] [PubMed] [Google Scholar]
  22. Kissling M. M., Berger C., Kägi J. H., Andersen R. D., Weser U. The amino-terminal sequence of a rat liver metallothionein (MT-2). Experientia Suppl. 1979;34:181–185. doi: 10.1007/978-3-0348-6493-0_10. [DOI] [PubMed] [Google Scholar]
  23. Kojima Y., Berger C., Vallee B. L., Kägi J. H. Amino-acid sequence of equine renal metallothionein-1B. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3413–3417. doi: 10.1073/pnas.73.10.3413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kägi J. H., Himmelhoch S. R., Whanger P. D., Bethune J. L., Vallee B. L. Equine hepatic and renal metallothioneins. Purification, molecular weight, amino acid composition, and metal content. J Biol Chem. 1974 Jun 10;249(11):3537–3542. [PubMed] [Google Scholar]
  25. Kägi J. H., Kojima Y., Kissling M. M., Lerch K. Metallothionein: an exceptional metal thiolate protein. Ciba Found Symp. 1979;(72):223–237. doi: 10.1002/9780470720554.ch14. [DOI] [PubMed] [Google Scholar]
  26. Lerch K., Ammer D., Olafson R. W. Crab metallothionein. Primary structures of metallothioneins 1 and 2. J Biol Chem. 1982 Mar 10;257(5):2420–2426. [PubMed] [Google Scholar]
  27. Levitt M. A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol. 1976 Jun 14;104(1):59–107. doi: 10.1016/0022-2836(76)90004-8. [DOI] [PubMed] [Google Scholar]
  28. Mallie R. J., Garvey J. S. Production and study of antibody produced against rat cadmium thionein. Immunochemistry. 1978 Dec;15(12):857–868. doi: 10.1016/0161-5890(78)90119-0. [DOI] [PubMed] [Google Scholar]
  29. Nozaki Y., Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem. 1971 Apr 10;246(7):2211–2217. [PubMed] [Google Scholar]
  30. Otvos J. D., Armitage I. M. Structure of the metal clusters in rabbit liver metallothionein. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7094–7098. doi: 10.1073/pnas.77.12.7094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Prinz R., Weser U. Cuprodoxin. FEBS Lett. 1975 Jun 15;54(2):224–229. doi: 10.1016/0014-5793(75)80079-2. [DOI] [PubMed] [Google Scholar]
  32. Sakata S., Atassi M. Z. Immune recognition of serum albumin--XIII. Autoreactivity with rabbit serum albumin of rabbit antibodies against bovine or human serum albumins and autoimmune recognition of rabbit serum albumin. Mol Immunol. 1981 Nov;18(11):961–967. doi: 10.1016/0161-5890(81)90113-9. [DOI] [PubMed] [Google Scholar]
  33. Tsunoo H., Kino K., Nakajima H., Hata A., Huang I. Y., Yoshida A. Mouse liver metallothioneins. Purification, molecular weight, amino acid composition, and metal content. J Biol Chem. 1978 Jun 25;253(12):4172–4174. [PubMed] [Google Scholar]
  34. Urbanski G. J., Margoliash E. Topographic determinants on cytochrome c. I. The complete antigenic structures of rabbit, mouse, and guanaco cytochromes c in rabbits and mice1. J Immunol. 1977 Apr;118(4):1170–1180. [PubMed] [Google Scholar]
  35. Vander Mallie R. J., Garvey J. S. Radioimmunoassay of metallothioneins. J Biol Chem. 1979 Sep 10;254(17):8416–8421. [PubMed] [Google Scholar]
  36. Vasák M., Galdes A., Hill H. A., Kägi J. H., Bremner I., Young B. W. Investigation of the structure of metallothioneins by proton nuclear magnetic resonance spectroscopy. Biochemistry. 1980 Feb 5;19(3):416–425. doi: 10.1021/bi00544a003. [DOI] [PubMed] [Google Scholar]
  37. Weser U., Rupp H., Donay F., Linnemann F., Voelter W., Voetsch W., Jung G. Characterization of Cd, Zn-thionein (metallothionein) isolated from rat and chicken liver. Eur J Biochem. 1973 Nov 1;39(1):127–140. doi: 10.1111/j.1432-1033.1973.tb03111.x. [DOI] [PubMed] [Google Scholar]
  38. Winge D. R., Geller B. L., Garvey J. Isolation of copper thionein from rat liver. Arch Biochem Biophys. 1981 Apr 15;208(1):160–166. doi: 10.1016/0003-9861(81)90135-1. [DOI] [PubMed] [Google Scholar]
  39. Winge D. R., Miklossy K. A. Differences in the polymorphic forms of metallothionein. Arch Biochem Biophys. 1982 Mar;214(1):80–88. doi: 10.1016/0003-9861(82)90010-8. [DOI] [PubMed] [Google Scholar]
  40. Winge D. R., Miklossy K. A. Domain nature of metallothionein. J Biol Chem. 1982 Apr 10;257(7):3471–3476. [PubMed] [Google Scholar]
  41. Winge D. R., Premakumar R., Rajagopalan K. V. Metal-induced formation of metallothionein in rat liver. Arch Biochem Biophys. 1975 Sep;170(1):242–252. doi: 10.1016/0003-9861(75)90115-0. [DOI] [PubMed] [Google Scholar]
  42. Zelazowski A. J., Piotrowski J. K. Mercury-binding, copper-zinc proteins from rat kidney. Amino acid composition, molecular wieght and metal content. Biochim Biophys Acta. 1980 Sep 23;625(1):89–99. doi: 10.1016/0005-2795(80)90111-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES