Abstract
We describe the theoretical basis of an unconventional method for the determination of the amount of energy transferred between two fluorophores by the Förster mechanism. The method involves an internal comparison made by separation of the fluorophores in situ (i.e., in the optical cell), for example, by means of enzymic digestion; it eliminates several important sources of error and it simplifies calculation while making maximal use of the information contained in the fluorescence spectra. The validity of the method is demonstrated by determination of the known distance between two modifiable sites on the transfer RNA molecule, and its usefulness is exemplified by its application to triangulation of the ribosome of Escherichia coli.
Keywords: fluorescence, tRNA, ribosome, protein
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carmel A., Kessler E., Yaron A. Intramolecularly-quenched fluorescent peptides as fluorogenic substrates ofleucine aminopeptidase and inhibitors of clostridial aminopeptidase. Eur J Biochem. 1977 Mar 1;73(2):617–625. doi: 10.1111/j.1432-1033.1977.tb11357.x. [DOI] [PubMed] [Google Scholar]
- Carmel Amos, Zur Margalit, Yaron Arieh, Katchalski Ephraim. Use of substrates with fluorescent donor and acceptor chromophores for the kinetic assay of hydrolases. FEBS Lett. 1973 Feb 15;30(1):11–14. doi: 10.1016/0014-5793(73)80607-6. [DOI] [PubMed] [Google Scholar]
- Epe B., Woolley P., Steinhäuser K. G., Littlechild J. Distance measurement by energy transfer: the 3' end of 16-S RNA and proteins S4 and S17 of the ribosome of Escherichia coli. Eur J Biochem. 1982 Dec;129(1):211–219. doi: 10.1111/j.1432-1033.1982.tb07042.x. [DOI] [PubMed] [Google Scholar]
- Haas E., Katchalski-Katzir E., Steinberg I. Z. Effect of the orientation of donor and acceptor on the probability of energy transfer involving electronic transitions of mixed polarization. Biochemistry. 1978 Nov 14;17(23):5064–5070. doi: 10.1021/bi00616a032. [DOI] [PubMed] [Google Scholar]
- Homann H. E., Nierhaus K. H. Ribosomal proteins. Protein compositions of biosynthetic precursors and artifical subparticles from ribosomal subunits in Escherichia coli K 12. Eur J Biochem. 1971 May 28;20(2):249–257. doi: 10.1111/j.1432-1033.1971.tb01388.x. [DOI] [PubMed] [Google Scholar]
- Odom O. W., Jr, Robbins D. J., Lynch J., Dottavio-Martin D., Kramer G., Hardesty B. Distances between 3' ends of ribosomal ribonucleic acids reassembled into Escherichia coli ribosomes. Biochemistry. 1980 Dec 23;19(26):5947–5954. doi: 10.1021/bi00567a001. [DOI] [PubMed] [Google Scholar]
- Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
- Steinhäuser K. G., Woolley P., Epe B., Dijk J. Structure of ribosomal protein L6 from Escherichia coli. A fluorescence study. Eur J Biochem. 1982 Oct;127(3):587–595. doi: 10.1111/j.1432-1033.1982.tb06913.x. [DOI] [PubMed] [Google Scholar]
- Steinhäuser L., Woolley P., Friedrich K. Thin-layer chromatography of oligonucleotides: a device to aid the ultraviolet detection of fingerprint patterns. Anal Biochem. 1982 Feb;120(1):189–192. doi: 10.1016/0003-2697(82)90335-9. [DOI] [PubMed] [Google Scholar]
- Yang C. H., Söll D. Covalent attachment of a fluorescent group to 4-thiouridine in transfer RNA. J Biochem. 1973 Jun;73(6):1243–1247. doi: 10.1093/oxfordjournals.jbchem.a130197. [DOI] [PubMed] [Google Scholar]
- Yang C. H., Söll D. Studies of transfer RNA tertiary structure of singlet-singlet energy transfer. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2838–2842. doi: 10.1073/pnas.71.7.2838. [DOI] [PMC free article] [PubMed] [Google Scholar]
