Abstract
In a system of N populations of n reproductive individuals apiece, in which each population has constant variance v2 and lasts L generations, group selection on a quantitative character has a reasonable chance of overriding selection within populations if (and only if) the populations never exchange migrants, each population is founded by colonists from a single parent population, and the number of populations exceeds the effective number of reproductive individuals per population. If each population derives from a single parent population, then the exchange of a single successful migrant per population per L generations can triple the strength of group selection required to overcome a given selection within populations. If populations exchange no migrants, then the derivation of one in every N populations from two equally represented parents (while the others all derive from a single parent) doubles the strength of group selection required to prevail. Group selection is accordingly likely to be effective only in certain categories of parasites.
Keywords: population genetics, quantitative inheritance, group selection, mutualism, species selection
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Crow J. F., Aoki K. Group selection for a polygenic behavioral trait: a differential proliferation model. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2628–2631. doi: 10.1073/pnas.79.8.2628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eberhard W. G. Evolutionary consequences of intracellular organelle competition. Q Rev Biol. 1980 Sep;55(3):231–249. doi: 10.1086/411855. [DOI] [PubMed] [Google Scholar]
- Eshel I. On the neighbor effect and the evolution of altruistic traits. Theor Popul Biol. 1972 Sep;3(3):258–277. doi: 10.1016/0040-5809(72)90003-2. [DOI] [PubMed] [Google Scholar]
- Hamilton W. D. The genetical evolution of social behaviour. II. J Theor Biol. 1964 Jul;7(1):17–52. doi: 10.1016/0022-5193(64)90039-6. [DOI] [PubMed] [Google Scholar]
- Hill W. G. Rates of change in quantitative traits from fixation of new mutations. Proc Natl Acad Sci U S A. 1982 Jan;79(1):142–145. doi: 10.1073/pnas.79.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeon K. W. Development of cellular dependence on infective organisms: micrurgical studies in amoebas. Science. 1972 Jun 9;176(4039):1122–1123. doi: 10.1126/science.176.4039.1122. [DOI] [PubMed] [Google Scholar]
- Lande R. The minimum number of genes contributing to quantitative variation between and within populations. Genetics. 1981 Nov-Dec;99(3-4):541–553. doi: 10.1093/genetics/99.3-4.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leigh E. G. How does selection reconcile individual advantage with the good of the group? Proc Natl Acad Sci U S A. 1977 Oct;74(10):4542–4546. doi: 10.1073/pnas.74.10.4542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slatkin M. Estimating levels of gene flow in natural populations. Genetics. 1981 Oct;99(2):323–335. doi: 10.1093/genetics/99.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slatkin M., Wade M. J. Group selection on a quantitative character. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3531–3534. doi: 10.1073/pnas.75.7.3531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smithers S. R., Terry R. J., Hockley D. J. Host antigens in schistosomiasis. Proc R Soc Lond B Biol Sci. 1969 Feb 25;171(1025):483–494. doi: 10.1098/rspb.1969.0007. [DOI] [PubMed] [Google Scholar]
- West-Eberhard M. J. Temporary queens in metapolybia wasps: nonreproductive helpers without altruism? Science. 1978 Apr 28;200(4340):441–443. doi: 10.1126/science.200.4340.441. [DOI] [PubMed] [Google Scholar]
- Wilson D. S. A theory of group selection. Proc Natl Acad Sci U S A. 1975 Jan;72(1):143–146. doi: 10.1073/pnas.72.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]