Abstract
Mutants of Drosophila melanogaster selected for resistance to purine killing are deficient in adenine phosphoribosyltransferase (APRT; E.C. 2.4.2.7) activity. Genetic mapping and complementation analysis demonstrate that purine resistance, deficiency of APRT activity, and differences in the isoelectric point of APRT result from alterations at a single locus, Aprt (map position, 3:3.03). The level of APRT activity shows gene dose dependence in Aprt heterozygotes and in flies that are haploid for different Aprt alleles. Drosophila APRT is a dimer composed of apparently identical 23,000-dalton subunits. These results suggest that Aprt contains the structural gene for APRT.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chasin L. A., Urlaub G. Mutant alleles for hypoxanthine phosphoriboxyltransferase: codominant expression, complementation, and segregation in hybrid Chinese hamster cells. Somatic Cell Genet. 1976 Sep;2(5):453–467. doi: 10.1007/BF01542725. [DOI] [PubMed] [Google Scholar]
- Epstein J., Leyva A., Kelley W. N., Littlefield J. W. Mutagen-induced diploid human lymphoblast variants containing altered hypoxanthine guanine phosphoribosyl transferase. Somatic Cell Genet. 1977 Mar;3(2):135–148. doi: 10.1007/BF01551810. [DOI] [PubMed] [Google Scholar]
- Hall J. C., Kankel D. R. Genetics of acetylcholinesterase in Drosophila melanogaster. Genetics. 1976 Jul;83(3 PT2):517–535. [PMC free article] [PubMed] [Google Scholar]
- Holden J. A., Meredith G. S., Kelley W. N. Structural studies of human adenine phosphoribosyltransferase purified by affinity chromatography. Adv Exp Med Biol. 1979;122B:123–129. doi: 10.1007/978-1-4684-8559-2_22. [DOI] [PubMed] [Google Scholar]
- Johnson D. H., Friedman T. B. Purine resistant mutants of Drosophila are adenine phosphoribosyltransferase deficient. Science. 1981 May 29;212(4498):1035–1036. doi: 10.1126/science.212.4498.1035. [DOI] [PubMed] [Google Scholar]
- Kenimer J. G., Young L. G., Groth D. P. Purification and properties of rat liver adenine phosphoribosyltransferase. Biochim Biophys Acta. 1975 Mar 28;384(1):87–101. doi: 10.1016/0005-2744(75)90098-4. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- O'Brien S. J., Gethmann R. C. Segmental aneuploidy as a probe for structural genes in Drosophila: mitochondrial membrane enzymes. Genetics. 1973 Sep;75(1):155–167. doi: 10.1093/genetics/75.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Rawls J. M., Fristrom J. W. A complex genetic locus that controls of the first three steps of pyrimidine biosynthesis in Drosophila. Nature. 1975 Jun 26;255(5511):738–740. doi: 10.1038/255738a0. [DOI] [PubMed] [Google Scholar]
- Roberts D. B., Evans-Roberts S. The genetic and cytogenetic localization of the three structural genes coding for the major protein of drosophila larval serum. Genetics. 1979 Nov;93(3):663–679. doi: 10.1093/genetics/93.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyss C. TAM selection of Drosophila somatic cell hybrids. Somatic Cell Genet. 1979 Jan;5(1):29–37. doi: 10.1007/BF01538784. [DOI] [PubMed] [Google Scholar]