Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 May;80(10):3106–3110. doi: 10.1073/pnas.80.10.3106

Demonstration of a neurotrophic factor for the maintenance of acetylcholinesterase and butyrylcholinesterase in the preganglionically denervated superior cervical ganglion of the cat.

G B Koelle, G A Ruch
PMCID: PMC393983  PMID: 6190171

Abstract

Under sodium pentobarbital anesthesia, the superior cervical ganglia of cats were preganglionically denervated bilaterally. The following day cats were reanesthetized, the external carotid and lingual arteries were ligated bilaterally, and the right common carotid artery was infused for 24 hr with an extract prepared from cat brain, spinal cord, and sciatic nerves, with and without the incorporation of aprotinin, an inhibitor of proteases. They were sacrificed 48 hr after denervation, and the acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) and butyrylcholinesterase (acylcholine acylhydrolase, EC 3.1.1.8) contents of the superior cervical ganglia were compared with those of similarly denervated control ganglia. Both types of extract produced a significant reduction in the loss of both enzymes from the superior cervical ganglia, as did infusions of aprotinin alone. These findings demonstrate the presence of an endogenous neurotrophic factor for the maintenance of ganglionic acetylcholinesterase and butyrylcholinesterase. Its possible mechanisms of action, and those of aprotinin, are discussed.

Full text

PDF
3106

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLOCH M., EDGEHILL H. B. A simple device for surface-cooling hypothermia. Lancet. 1963 Apr 20;1(7286):865–866. doi: 10.1016/s0140-6736(63)91633-7. [DOI] [PubMed] [Google Scholar]
  2. CAVANAGH J. B., THOMPSON R. H., WEBSTER G. R. The localization of pseudo-cholinesterase activity in nervous tissue. Q J Exp Physiol Cogn Med Sci. 1954;39(3):185–197. doi: 10.1113/expphysiol.1954.sp001070. [DOI] [PubMed] [Google Scholar]
  3. CHUNGCHAROEN D., DE BURGH DALY M., SCHWEITZER A. The blood supply of the superior cervical sympathetic and the nodose ganglia in cats, dogs and rabbits. J Physiol. 1952 Dec;118(4):528–536. doi: 10.1113/jphysiol.1952.sp004814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davey B., Younkin L. H., Younkin S. G. Neural control of skeletal muscle cholinesterase: a study using organ-cultured rat muscle. J Physiol. 1979 Apr;289:501–515. doi: 10.1113/jphysiol.1979.sp012749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis R., Koelle G. B. Electron microscope localization of acetylcholinesterase and butyrylcholinesterase in the superior cervical ganglion of the cat. I. Normal ganglion. J Cell Biol. 1978 Sep;78(3):785–809. doi: 10.1083/jcb.78.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis R., Koelle G. B. Electron microscope localization of acetylcholinesterase and butyrylcholinesterase in the superior cervical ganglion of the cat. II. Preganglionically denervated ganglion. J Cell Biol. 1981 Mar;88(3):581–590. doi: 10.1083/jcb.88.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drachman D. B. Neurotrophic regulation of muscle cholinesterase: effects of botulinum toxin and denervation. J Physiol. 1972 Nov;226(3):619–627. doi: 10.1113/jphysiol.1972.sp010000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  9. Guth L. "Trophic" influences of nerve on muscle. Physiol Rev. 1968 Oct;48(4):645–687. doi: 10.1152/physrev.1968.48.4.645. [DOI] [PubMed] [Google Scholar]
  10. HOLMSTEDT B., SJOQVIST F. Distribution of acetocholinesterase in the ganglion cells of various sympathetic ganglia. Acta Physiol Scand. 1959 Nov 15;47:284–296. doi: 10.1111/j.1748-1716.1960.tb00080.x. [DOI] [PubMed] [Google Scholar]
  11. Haberland G., McConn R. A rationale for the therapeutic action of aprotinin. Fed Proc. 1979 Dec;38(13):2760–2767. [PubMed] [Google Scholar]
  12. Ikeno T., Dickens G., Lloyd T., Guroff G. The receptor-mediated activation of tyrosine hydroxylation in the superior cervical ganglion of the rat. J Neurochem. 1981 May;36(5):1632–1640. doi: 10.1111/j.1471-4159.1981.tb00413.x. [DOI] [PubMed] [Google Scholar]
  13. Ip N. Y., Ho C. K., Zigmond R. E. Secretin and vasoactive intestinal peptide acutely increase tyrosine 3-monooxygenase in the rat superior cervical ganglion. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7566–7569. doi: 10.1073/pnas.79.23.7566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KAMIJO K., KOELLE G. B. The relationship between cholinesterase inhibition and ganglionic transmission. J Pharmacol Exp Ther. 1952 Jul;105(3):349–357. [PubMed] [Google Scholar]
  15. KARCZMAR A. G. Limb regeneration and differentiation of overt behavior in urodeles as studied by means of their response to chemical agents. Ann N Y Acad Sci. 1955 Jun 2;60(7):1108–1135. doi: 10.1111/j.1749-6632.1955.tb40092.x. [DOI] [PubMed] [Google Scholar]
  16. KOELLE G. B. The elimination of enzymatic diffusion artifacts in the histochemical localization of cholinesterases and a survey of their cellular distributions. J Pharmacol Exp Ther. 1951 Oct;103(2):153–171. [PubMed] [Google Scholar]
  17. KOELLE W. A., KOELLE G. B. The localization of external or functional acetylcholinesterase at the synapses of autonomic ganglia. J Pharmacol Exp Ther. 1959 May;126(1):1–8. [PubMed] [Google Scholar]
  18. KUPFER C., KOELLE G. B. A histochemical study of cholinesterase during formation of the motor end plate of the albino rat. J Exp Zool. 1951 Apr;116(3):397–413. doi: 10.1002/jez.1401160303. [DOI] [PubMed] [Google Scholar]
  19. Koelle G. B., Davis R., Koelle W. A. Effects of aldehyde fixation and of preganglionic denervation on acetylcholinesterase and butyrocholinesterase of cat autonomic ganglia. J Histochem Cytochem. 1974 Apr;22(4):244–251. doi: 10.1177/22.4.244. [DOI] [PubMed] [Google Scholar]
  20. Koelle G. B., Davis R., Smyrl E. G., Fine A. V. Refinement of the bis-(thioacetoxy) aurate (I) method for the electron microscopic localization of acetylcholinesterase and nonspecific cholinesterase. J Histochem Cytochem. 1974 Apr;22(4):252–259. doi: 10.1177/22.4.252. [DOI] [PubMed] [Google Scholar]
  21. Koelle G. B., Ruch G. A., Rickard K. K., Sanville U. J. Regeneration of cholinesterases in the stellate and normal and denervated superior cervical ganglion of the cat following inactivation by sarin. J Neurochem. 1982 Jun;38(6):1695–1698. doi: 10.1111/j.1471-4159.1982.tb06651.x. [DOI] [PubMed] [Google Scholar]
  22. Koelle W. A., Smyrl E. G., Ruch G. A., Siddons V. E., Koelle G. B. Effect of protection of butyrylcholinesterase on regeneration of ganglionic acetylcholinesterase. J Neurochem. 1977 Feb;28(2):307–311. doi: 10.1111/j.1471-4159.1977.tb07749.x. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Lentz T. L. Effect of brain extracts on cholinesterase activity of cultured skeletal muscle. Exp Neurol. 1974 Dec;45(3):520–526. doi: 10.1016/0014-4886(74)90157-5. [DOI] [PubMed] [Google Scholar]
  25. Lubińska L. Patterns of Wallerian degeneration of myelinated fibres in short and long peripheral stumps and in isolated segments of rat phrenic nerve. Interpretation of the role of axoplasmic flow of the trophic factor. Brain Res. 1982 Feb 11;233(2):227–240. doi: 10.1016/0006-8993(82)91199-4. [DOI] [PubMed] [Google Scholar]
  26. Oh T. H., Markelonis G. J. Neurotrophic protein regulates muscle acetylcholinesterase in culture. Science. 1978 Apr 21;200(4339):337–339. doi: 10.1126/science.635593. [DOI] [PubMed] [Google Scholar]
  27. Zyznar E. S. A rationale for the application of trasylol as a protease inhibitor in radioimmunoassay. Life Sci. 1981 Apr 27;28(17):1861–1866. doi: 10.1016/0024-3205(81)90291-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES