Abstract
An in vitro system for measurement of rabbit globin mRNA translation has been developed based on the formation of the NH2-terminal dipeptide, fMet-Val. The basic components include a partially purified initiation factor preparation from rabbit reticulocytes supplemented with eukaryotic initiation factor 4A, purified and formylated yeast Met-tRNAi, and rabbit liver or Escherichia coli Val-tRNA1Val. Picomole quantities of fMet-Val are synthesized, dependent on mRNA, and the dipeptide is readily assayed by a simple extraction procedure. In the presence of Leu-tRNA or His-tRNA, the tripeptides fMet-Val-Leu and fMet-Val-His are synthesized, corresponding to the NH2-terminal sequence of alpha- and beta-globin, respectively. Therefore, tripeptide synthesis provides a simple means to distinguish between the expression of the alpha- and beta-globin mRNA species.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkins J. F., Gesteland R. F., Reid B. R., Anderson C. W. Normal tRNAs promote ribosomal frameshifting. Cell. 1979 Dec;18(4):1119–1131. doi: 10.1016/0092-8674(79)90225-3. [DOI] [PubMed] [Google Scholar]
- Cenatiempo Y., Robakis N., Meza-Basso L., Brot N., Weissbach H., Reid B. R. Use of different tRNASer isoacceptor species in vitro to discriminate between the expression of plasmid genes. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1466–1468. doi: 10.1073/pnas.79.5.1466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cenatiempo Y., Robakis N., Reid B. R., Weissbach H., Brot N. In vitro expression of Escherichia coli ribosomal protein L 10 gene: tripeptide synthesis as a measure of functional mRNA. Arch Biochem Biophys. 1982 Oct 15;218(2):572–578. doi: 10.1016/0003-9861(82)90381-2. [DOI] [PubMed] [Google Scholar]
- Crystal R. G., Anderson W. F. Initiation of hemoglobin synthesis: comparison of model reactions that use artificial templates with those using natural messenger RNA. Proc Natl Acad Sci U S A. 1972 Mar;69(3):706–711. doi: 10.1073/pnas.69.3.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crystal R. G., Nienhuis A. W., Elson N. A., Anderson W. F. Initiation of globin synthesis. Preparation and use of reticulocyte ribosomes retaining initiation region messenger ribonucleic acid fragments. J Biol Chem. 1972 Sep 10;247(17):5357–5368. [PubMed] [Google Scholar]
- Crystal R. G., Shafritz D. A., Prichard P. M., Anderson W. F. Initial dipeptide formation in hemoglobin biosynthesis. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1810–1814. doi: 10.1073/pnas.68.8.1810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickerman H. W., Steers E., Jr, Redfield B. G., Weissbach H. Methionyl soluble ribonucleic acid transformylase. I. Purification and partial characterization. J Biol Chem. 1967 Apr 10;242(7):1522–1525. [PubMed] [Google Scholar]
- Goldstein J., Safer B. Use of heparin-Sepharose for the rapid isolation of initiation and elongation factors. Methods Enzymol. 1979;60:165–181. doi: 10.1016/s0076-6879(79)60014-9. [DOI] [PubMed] [Google Scholar]
- Kemper W. M., Merrick W. C. Preparation of protein synthesis elongation factors from rabbit reticulocytes. Methods Enzymol. 1979;60:638–648. doi: 10.1016/s0076-6879(79)60060-5. [DOI] [PubMed] [Google Scholar]
- Kung H., Spears C., Weissbach H. Purification and properties of a soluble factor required for the deoxyribonucleic acid-directed in vitro synthesis of beta-galactosidase. J Biol Chem. 1975 Feb 25;250(4):1556–1562. [PubMed] [Google Scholar]
- Lodish H. F. Alpha and beta globin messenger ribonucleic acid. Different amounts and rates of initiation of translation. J Biol Chem. 1971 Dec 10;246(23):7131–7138. [PubMed] [Google Scholar]
- Lodish H. F., Jacobsen M. Regulation of hemoglobin synthesis. Equal rates of translation and termination of - and -globin chains. J Biol Chem. 1972 Jun 10;247(11):3622–3629. [PubMed] [Google Scholar]
- Lodish H. F. Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature. 1974 Oct 4;251(5474):385–388. doi: 10.1038/251385a0. [DOI] [PubMed] [Google Scholar]
- Nombela C., Redfield B., Ochoa S., Weissbach H. Elongation factor 1 from Artemia salina: properties and disaggregation of the enzyme. Eur J Biochem. 1976 Jun 1;65(2):395–402. doi: 10.1111/j.1432-1033.1976.tb10353.x. [DOI] [PubMed] [Google Scholar]
- Peacock S., Cenatiempo Y., Robakis N., Brot N., Weissbach H. In vitro synthesis of the first dipeptide of the beta subunit of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4609–4612. doi: 10.1073/pnas.79.15.4609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reid B. R., Ribeiro N. S., McCollum L., Abbate J., Hurd R. E. High-resolution nuclear magnetic resonance determination of transfer RNA tertiary base pairs in solution. 1. Species containing a small variable loop. Biochemistry. 1977 May 17;16(10):2086–2094. doi: 10.1021/bi00629a006. [DOI] [PubMed] [Google Scholar]
- Robakis N., Meza-Basso L., Brot N., Weissbach H. Translational control of ribosomal protein L10 synthesis occurs prior to formation of first peptide bond. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4261–4264. doi: 10.1073/pnas.78.7.4261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roy K. L., Söll D. Purification of five serine transfer ribonucleic acid species from Escherichia coli and their acylation by homologous and heterologous seryl transfer ribonucleic acid synthetases. J Biol Chem. 1970 Mar 25;245(6):1394–1400. [PubMed] [Google Scholar]
- Takeishi K., Takemoto T., Nishimura S., Ukita T. Selective utilization of valyl-tRNA having a particular coding specificity in a rabbit hemoglobin synthesizing system. Biochem Biophys Res Commun. 1972 May 26;47(4):746–752. doi: 10.1016/0006-291x(72)90555-4. [DOI] [PubMed] [Google Scholar]
- Warner A. H., MacRae T. H., Wahba A. J. The use of Artemia salina for developmental studies: preparation of embryos, tRNA, ribosomes and initiation factor 2. Methods Enzymol. 1979;60:298–311. doi: 10.1016/s0076-6879(79)60028-9. [DOI] [PubMed] [Google Scholar]
- Zasloff M., Ochoa S. A supernatant factor involved in initiation complex formation with eukaryotic ribosomes. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3059–3063. doi: 10.1073/pnas.68.12.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]
