Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jun;80(11):3223–3226. doi: 10.1073/pnas.80.11.3223

Simplified in vitro system for study of eukaryotic mRNA translation by measuring di- and tripeptide formation.

Y Cenatiempo, T Twardowski, B Redfield, B R Reid, H Dauerman, H Weissbach, N Brot
PMCID: PMC394012  PMID: 6574481

Abstract

An in vitro system for measurement of rabbit globin mRNA translation has been developed based on the formation of the NH2-terminal dipeptide, fMet-Val. The basic components include a partially purified initiation factor preparation from rabbit reticulocytes supplemented with eukaryotic initiation factor 4A, purified and formylated yeast Met-tRNAi, and rabbit liver or Escherichia coli Val-tRNA1Val. Picomole quantities of fMet-Val are synthesized, dependent on mRNA, and the dipeptide is readily assayed by a simple extraction procedure. In the presence of Leu-tRNA or His-tRNA, the tripeptides fMet-Val-Leu and fMet-Val-His are synthesized, corresponding to the NH2-terminal sequence of alpha- and beta-globin, respectively. Therefore, tripeptide synthesis provides a simple means to distinguish between the expression of the alpha- and beta-globin mRNA species.

Full text

PDF
3223

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins J. F., Gesteland R. F., Reid B. R., Anderson C. W. Normal tRNAs promote ribosomal frameshifting. Cell. 1979 Dec;18(4):1119–1131. doi: 10.1016/0092-8674(79)90225-3. [DOI] [PubMed] [Google Scholar]
  2. Cenatiempo Y., Robakis N., Meza-Basso L., Brot N., Weissbach H., Reid B. R. Use of different tRNASer isoacceptor species in vitro to discriminate between the expression of plasmid genes. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1466–1468. doi: 10.1073/pnas.79.5.1466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cenatiempo Y., Robakis N., Reid B. R., Weissbach H., Brot N. In vitro expression of Escherichia coli ribosomal protein L 10 gene: tripeptide synthesis as a measure of functional mRNA. Arch Biochem Biophys. 1982 Oct 15;218(2):572–578. doi: 10.1016/0003-9861(82)90381-2. [DOI] [PubMed] [Google Scholar]
  4. Crystal R. G., Anderson W. F. Initiation of hemoglobin synthesis: comparison of model reactions that use artificial templates with those using natural messenger RNA. Proc Natl Acad Sci U S A. 1972 Mar;69(3):706–711. doi: 10.1073/pnas.69.3.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crystal R. G., Nienhuis A. W., Elson N. A., Anderson W. F. Initiation of globin synthesis. Preparation and use of reticulocyte ribosomes retaining initiation region messenger ribonucleic acid fragments. J Biol Chem. 1972 Sep 10;247(17):5357–5368. [PubMed] [Google Scholar]
  6. Crystal R. G., Shafritz D. A., Prichard P. M., Anderson W. F. Initial dipeptide formation in hemoglobin biosynthesis. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1810–1814. doi: 10.1073/pnas.68.8.1810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dickerman H. W., Steers E., Jr, Redfield B. G., Weissbach H. Methionyl soluble ribonucleic acid transformylase. I. Purification and partial characterization. J Biol Chem. 1967 Apr 10;242(7):1522–1525. [PubMed] [Google Scholar]
  8. Goldstein J., Safer B. Use of heparin-Sepharose for the rapid isolation of initiation and elongation factors. Methods Enzymol. 1979;60:165–181. doi: 10.1016/s0076-6879(79)60014-9. [DOI] [PubMed] [Google Scholar]
  9. Kemper W. M., Merrick W. C. Preparation of protein synthesis elongation factors from rabbit reticulocytes. Methods Enzymol. 1979;60:638–648. doi: 10.1016/s0076-6879(79)60060-5. [DOI] [PubMed] [Google Scholar]
  10. Kung H., Spears C., Weissbach H. Purification and properties of a soluble factor required for the deoxyribonucleic acid-directed in vitro synthesis of beta-galactosidase. J Biol Chem. 1975 Feb 25;250(4):1556–1562. [PubMed] [Google Scholar]
  11. Lodish H. F. Alpha and beta globin messenger ribonucleic acid. Different amounts and rates of initiation of translation. J Biol Chem. 1971 Dec 10;246(23):7131–7138. [PubMed] [Google Scholar]
  12. Lodish H. F., Jacobsen M. Regulation of hemoglobin synthesis. Equal rates of translation and termination of - and -globin chains. J Biol Chem. 1972 Jun 10;247(11):3622–3629. [PubMed] [Google Scholar]
  13. Lodish H. F. Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature. 1974 Oct 4;251(5474):385–388. doi: 10.1038/251385a0. [DOI] [PubMed] [Google Scholar]
  14. Nombela C., Redfield B., Ochoa S., Weissbach H. Elongation factor 1 from Artemia salina: properties and disaggregation of the enzyme. Eur J Biochem. 1976 Jun 1;65(2):395–402. doi: 10.1111/j.1432-1033.1976.tb10353.x. [DOI] [PubMed] [Google Scholar]
  15. Peacock S., Cenatiempo Y., Robakis N., Brot N., Weissbach H. In vitro synthesis of the first dipeptide of the beta subunit of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4609–4612. doi: 10.1073/pnas.79.15.4609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reid B. R., Ribeiro N. S., McCollum L., Abbate J., Hurd R. E. High-resolution nuclear magnetic resonance determination of transfer RNA tertiary base pairs in solution. 1. Species containing a small variable loop. Biochemistry. 1977 May 17;16(10):2086–2094. doi: 10.1021/bi00629a006. [DOI] [PubMed] [Google Scholar]
  17. Robakis N., Meza-Basso L., Brot N., Weissbach H. Translational control of ribosomal protein L10 synthesis occurs prior to formation of first peptide bond. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4261–4264. doi: 10.1073/pnas.78.7.4261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roy K. L., Söll D. Purification of five serine transfer ribonucleic acid species from Escherichia coli and their acylation by homologous and heterologous seryl transfer ribonucleic acid synthetases. J Biol Chem. 1970 Mar 25;245(6):1394–1400. [PubMed] [Google Scholar]
  19. Takeishi K., Takemoto T., Nishimura S., Ukita T. Selective utilization of valyl-tRNA having a particular coding specificity in a rabbit hemoglobin synthesizing system. Biochem Biophys Res Commun. 1972 May 26;47(4):746–752. doi: 10.1016/0006-291x(72)90555-4. [DOI] [PubMed] [Google Scholar]
  20. Warner A. H., MacRae T. H., Wahba A. J. The use of Artemia salina for developmental studies: preparation of embryos, tRNA, ribosomes and initiation factor 2. Methods Enzymol. 1979;60:298–311. doi: 10.1016/s0076-6879(79)60028-9. [DOI] [PubMed] [Google Scholar]
  21. Zasloff M., Ochoa S. A supernatant factor involved in initiation complex formation with eukaryotic ribosomes. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3059–3063. doi: 10.1073/pnas.68.12.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES