Skip to main content
Journal of Clinical and Experimental Hepatology logoLink to Journal of Clinical and Experimental Hepatology
. 2011 Nov 9;1(2):87–93. doi: 10.1016/S0973-6883(11)60127-8

Pathophysiology of Portal Hypertension and Its Clinical Links

Yeon Seok Seo *, Vijay H Shah *,**,*
PMCID: PMC3940250  PMID: 25755320

Abstract

Portal hypertension is a major cause of morbidity and mortality in patients with liver cirrhosis. Intrahepatic vascular resistance due to architectural distortion and intrahepatic vasoconstriction, increased portal blood flow due to splanchnic vasodilatation, and development of collateral circulation have been considered as major factors for the development of portal hypertension. Recently, sinusoidal remodeling and angiogenesis have been focused as potential etiologic factors and various researchers have tried to improve portal hypertension by modulating these new targets. This article reviews potential new treatments in the context of portal hypertension pathophysiology concepts.

Keywords: angiogenesis, pathophysiology, portal hypertension, sinusoids, treatment

Abbreviations: AT, angiotensin; ET-1, endothelin-1; eNOS, endothelial nitric oxide synthase; HSC, hepatic stellate cell; HVPG, hepatic venous pressure gradient; NO, nitric oxide; PDGF, platelet-derived growth factor; PIGF, placenta! growth factor; RAS, renin-angiotensin system; RCT, randomized controlled trial; VEGF, vascular endothelial growth factor

Full Text

The Full Text of this article is available as a PDF (305.4 KB).

References

  • 1.Reuben A, Groszmann RJ. Portal hypertension: a history. In: Sanyal AJ, Shah VH, editors. Portal Hypertension. Humana Press; Totowa NJ: 2005. pp. 3–11. [Google Scholar]
  • 2.Shah VH, Kamath PS. Portal hypertension and gastrointestinal bleeding. In: Feldman M, Friedman LS, Brandt LJ, editors. Sleisenger and Fordtran's Gastrointestinal and Liver Disease. 9th ed. Saunders; Philadelphia, PA: 2010. pp. 1489–1516. [Google Scholar]
  • 3.Gupta TK, Chen L, Groszmann RJ. Pathophysiology of portal hypertension. Baillieres Clin Gastroenterol. 1997;11:203–219. doi: 10.1016/s0950-3528(97)90036-1. [DOI] [PubMed] [Google Scholar]
  • 4.Bhathal PS, Grossman HJ. Reduction of the increased portal vascular resistance of the isolated perfused cirrhotic rat liver by vasodilators. J Hepatol. 1985;1:325–337. doi: 10.1016/s0168-8278(85)80770-4. [DOI] [PubMed] [Google Scholar]
  • 5.Morales-Ruiz M. Transduction of the liver with activated Akt normalizes portal pressure in cirrhotic rats. Gastroenterology. 2003;125:522–531. doi: 10.1016/s0016-5085(03)00909-0. [DOI] [PubMed] [Google Scholar]
  • 6.Rockey D. The cellular pathogenesis of portal hypertension: stellate cell contractility, endothelin, and nitric oxide. Hepatology. 1997;25:2–5. doi: 10.1053/jhep.1997.v25.ajhep0250002. [DOI] [PubMed] [Google Scholar]
  • 7.Rockey DC, Weisiger RA. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology. 1996;24:233–240. doi: 10.1002/hep.510240137. [DOI] [PubMed] [Google Scholar]
  • 8.Rockey DC, Chung JJ. Inducible nitric oxide synthase in rat hepatic lipocytes and the effect of nitric oxide on lipocyte contractility. J Clin Invest. 1995;95:1199–1206. doi: 10.1172/JCI117769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Pannen BH, Bauer M, Zhang JX, Robotham JL, Clemens MG. A time-dependent balance between endothelins and nitric oxide regulating portal resistance after endotoxin. Am J Physiol. 1996;271:1-11953–1-11961. doi: 10.1152/ajpheart.1996.271.5.H1953. [DOI] [PubMed] [Google Scholar]
  • 10.McCormick PA, Biagini MR, Dick R. Octreotide inhibits the meal-induced increases in the portal venous pressure of cirrhotic patients with portal hypertension: a double-blind, placebo-controlled study. Hepatology. 1992;16:1180–1186. [PubMed] [Google Scholar]
  • 11.Reichen J, Gerbes AL, Steiner MJ, Sagesser H, Clozel M. The effect of endothelin and its antagonist Bosentan on hemodynam-ics and microvascular exchange in cirrhotic rat liver. J Hepatol. 1998;28:1020–1030. doi: 10.1016/s0168-8278(98)80352-8. [DOI] [PubMed] [Google Scholar]
  • 12.Kojima H, Yamao J, Tsujimoto T, Uemura M. Mixed endothelin receptor antagonist, SB209670, decreases portal pressure in biliary cirrhotic rats in vivo by reducing portal venous system resistance. J Hepatol. 2000;32:43–50. doi: 10.1016/s0168-8278(00)80188-9. [DOI] [PubMed] [Google Scholar]
  • 13.Thirunavukkarasu C, Yang Y, Subbotin VM, Harvey SA, Fung J, Gandhi CR. Endothelin receptor antagonist TAK-044 arrests and reverses the development of carbon tetrachloride induced cirrhosis in rats. Gut. 2004;53:1010–1019. doi: 10.1136/gut.2003.026534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Shah V, Toruner M, Haddad F. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology. 1999;117:1222–1228. doi: 10.1016/s0016-5085(99)70408-7. [DOI] [PubMed] [Google Scholar]
  • 15.Yu Q, Shao R, Qian HS, George SE, Rockey DC. Gene transfer of the neuronal NO synthase isoform to cirrhotic rat liver ameliorates portal hypertension. J Clin Invest. 2000;105:741–748. doi: 10.1172/JCI7997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Loureiro-Silva MR, Cadelina GW, Iwakiri Y, Groszmann RJ. A liver-specific nitric oxide donor improves the intra-hepatic vascular response to both portal blood flow increase and methoxamine in cirrhotic rats. J Hepatol. 2003;39:940–946. doi: 10.1016/j.jhep.2003.09.018. [DOI] [PubMed] [Google Scholar]
  • 17.Tripathi D, Therapondos G, Ferquson JW, Newby DE, Webb DJ, Hayes PC. Endothelin-1 contributes to maintenance of systemic but not portal haemodynamics in patients with early cirrhosis: a randomised controlled trial. Gut. 2006;55:1290–1295. doi: 10.1136/gut.2005.077453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Bellis L, Berziqotti A, Abraldes JG. Low doses of isosorbide mononitrate attenuate the postprandial increase in portal pressure in patients with cirrhosis. Hepatology. 2003;37:378–384. doi: 10.1053/jhep.2003.50053. [DOI] [PubMed] [Google Scholar]
  • 19.Navasa M, Chesta J, Bosch J, Rodes J. Reduction of portal pressure by isosorbide-5-mononitrate in patients with cirrhosis. Effects on splanchnic and systemic hemodynamics and liver function. Gastroenterology. 1989;96:1110–1118. doi: 10.1016/0016-5085(89)91630-2. [DOI] [PubMed] [Google Scholar]
  • 20.Berzigotti A, Bellot P, De Gottardi A. NCX-1000, a nitric oxide-releasing derivative of UDCA, does not decrease portal pressure in patients with cirrhosis: results of a randomized, double-blind, dose-escalating study. Am J Gastroenterol. 2010;105:1094–1101. doi: 10.1038/ajg.2009.661. [DOI] [PubMed] [Google Scholar]
  • 21.Eriksson C, Gustavsson A, Kronvall T, Tysk C. Hepatotoxicity by bosentan in a patient with portopulmonary hypertension: a case-report and review of the literature. J Gastrointestin Liver Dis. 2011;20:77–80. [PubMed] [Google Scholar]
  • 22.Humbert M, Segal ES, Kiely DG. Results of European post-marketing surveillance of bosentan in pulmonary hypertension. Eur RespirJ. 2007;30:338–344. doi: 10.1183/09031936.00138706. [DOI] [PubMed] [Google Scholar]
  • 23.Sikuler E, Groszmann RJ. Hemodynamic studies in long- and short-term portal hypertensive rats: the relation to systemic glu-cagon levels. Hepatology. 1986;6:414–418. doi: 10.1002/hep.1840060315. [DOI] [PubMed] [Google Scholar]
  • 24.Vorobioff J, Bredfeldt JE, Groszmann RJ. Increased blood flow through the portal system in cirrhotic rats. Gastroenterology. 1984;87:1120–1126. [PubMed] [Google Scholar]
  • 25.Vorobioff J, Bredfeldt JE, Groszmann RJ. Hyperdynamic circulation in portal-hypertensive rat model: a primary factor for maintenance of chronic portal hypertension. Am J Physiol. 1983;244:G52–G57. doi: 10.1152/ajpgi.1983.244.1.G52. [DOI] [PubMed] [Google Scholar]
  • 26.Benoit JN, Granger DN. Splanchnic hemodynamics in chronic portal hypertension. Semin Liver Dis. 1986;6:287–298. doi: 10.1055/s-2008-1040611. [DOI] [PubMed] [Google Scholar]
  • 27.Schrier RW, Arroyo V, Bernardi M. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology. 1988;8:1151–1157. doi: 10.1002/hep.1840080532. [DOI] [PubMed] [Google Scholar]
  • 28.Lee FY, Albillos A, Colombato LA, Groszmann RJ. The role of nitric oxide in the vascular hyporesponsiveness to methoxamine in portal hypertensive rats. Hepatology. 1992;16:1043–1048. doi: 10.1002/hep.1840160430. [DOI] [PubMed] [Google Scholar]
  • 29.Sieber CC, Lopez-Talavera JC, Groszmann RJ. Role of nitric oxide in the in vitro splanchnic vascular hyporeactivity in ascitic cirrhotic rats. Gastroenterology. 1993;104:1750–1754. doi: 10.1016/0016-5085(93)90655-v. [DOI] [PubMed] [Google Scholar]
  • 30.Maroto A, Ginès P, Arroyo V. Brachial and femoral artery blood flow in cirrhosis: relationship to kidney dysfunction. Hepatology. 1993;17:788–793. [PubMed] [Google Scholar]
  • 31.Maroto A, Gines A, Salo J. Diagnosis of functional kidney failure of cirrhosis with Doppler sonography: prognostic value of resistive index. Hepatology. 1994;20:839–844. doi: 10.1002/hep.1840200411. [DOI] [PubMed] [Google Scholar]
  • 32.Fernandez-Seara J, Prieto J, Quiroga J. Systemic and regional hemodynamics in patients with liver cirrhosis and ascites with and without functional renal failure. Gastroenterology. 1989;97:1304–1312. doi: 10.1016/0016-5085(89)91704-6. [DOI] [PubMed] [Google Scholar]
  • 33.Guevara M, Bru C, Ginès P. Increased cerebrovascular resistance in cirrhotic patients with ascites. Hepatology. 1998;28:39–44. doi: 10.1002/hep.510280107. [DOI] [PubMed] [Google Scholar]
  • 34.Lee JS, Semela D, Iredale J, Shah VH. Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? Hepatology. 2007;45:817–825. doi: 10.1002/hep.21564. [DOI] [PubMed] [Google Scholar]
  • 35.Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97:512–523. doi: 10.1161/01.RES.0000182903.16652.d7. [DOI] [PubMed] [Google Scholar]
  • 36.Borkham-Kamphorst E, van Roeyen CR, Ostendorf T. Profibrogenic potential of PDGF-D in liver fibrosis. J Hepatol. 2007;46:1064–1074. doi: 10.1016/j.jhep.2007.01.029. [DOI] [PubMed] [Google Scholar]
  • 37.Semela D, Das A, Langer D, Kang N, Leof E, Shah V. Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function. Gastroenterology. 2008;135:671–679. doi: 10.1053/j.gastro.2008.04.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Angermayr B, Fernandez M, Mejias M. Heme oxygenase attenuates oxidative stress and inflammation, and increases VEGF expression in portal hypertensive rats. J Hepatol. 2006;44:1033–1039. doi: 10.1016/j.jhep.2005.09.021. [DOI] [PubMed] [Google Scholar]
  • 39.Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodés J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol. 2005;43:98–103. doi: 10.1016/j.jhep.2005.02.022. [DOI] [PubMed] [Google Scholar]
  • 40.Fernandez M, Vizzutti F, Garcia-Pagan JC, Rodes J, Bosch J. Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology. 2004;126:886–894. doi: 10.1053/j.gastro.2003.12.012. [DOI] [PubMed] [Google Scholar]
  • 41.Rosmorduc O, Housset C. Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease. Semin Liver Dis. 2010;30:258–270. doi: 10.1055/s-0030-1255355. [DOI] [PubMed] [Google Scholar]
  • 42.Thabut D, Shah V. Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: new targets for the treatment of portal hypertension? J Hepatol. 2010;53:976–980. doi: 10.1016/j.jhep.2010.07.004. [DOI] [PubMed] [Google Scholar]
  • 43.Gille H, Kowalski J, Li B. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem. 2001;276:3222–3230. doi: 10.1074/jbc.M002016200. [DOI] [PubMed] [Google Scholar]
  • 44.Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25. doi: 10.1210/edrv.18.1.0287. [DOI] [PubMed] [Google Scholar]
  • 45.Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246:1306–1309. doi: 10.1126/science.2479986. [DOI] [PubMed] [Google Scholar]
  • 46.Bosch J, Masti R, Kravetz D. Effects of propranolol on azygos venous blood flow and hepatic and systemic hemodynamics in cirrhosis. Hepatology. 1984;4:1200–1205. doi: 10.1002/hep.1840040617. [DOI] [PubMed] [Google Scholar]
  • 47.Garcia-Tsao G, Grace ND, Groszmann RJ. Short-term effects of propranolol on portal venous pressure. Hepatology. 1986;6:101–106. doi: 10.1002/hep.1840060119. [DOI] [PubMed] [Google Scholar]
  • 48.Loannou G, Doust J, Rockey DC. Terlipressin for acute esophageal variceal hemorrhage. Cochrane Database Syst Rev. 2003 doi: 10.1002/14651858.CD002147. CD002147. [DOI] [PubMed] [Google Scholar]
  • 49.D'Amico G, Pagliaro L, Bosch J. Pharmacological treatment of portal hypertension: an evidence-based approach. Semin Liver Dis. 1999;19:475–505. doi: 10.1055/s-2007-1007133. [DOI] [PubMed] [Google Scholar]
  • 50.Bosch J, Kravetz D, Rodes J. Effects of somatostatin on hepatic and systemic hemodynamics in patients with cirrhosis of the liver: comparison with vasopressin. Gastroenterology. 1981;80:518–525. [PubMed] [Google Scholar]
  • 51.Villanueva C, Ortiz J, Sàbat M. Somatostatin alone or combined with emergency sclerotherapy in the treatment of acute esophageal variceal bleeding: a prospective randomized trial. Hepatology. 1999;30:384–389. doi: 10.1002/hep.510300222. [DOI] [PubMed] [Google Scholar]
  • 52.Reynaert H, Vaeyens F, Qin H. Somatostatin suppresses endothelin-1-induced rat hepatic stellate cell contraction via somatostatin receptor subtype 1. Gastroenterology. 2001;121:915–930. doi: 10.1053/gast.2001.27971. [DOI] [PubMed] [Google Scholar]
  • 53.Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ. Octreotide. N Engl J Med. 1996;334:246–254. doi: 10.1056/NEJM199601253340408. [DOI] [PubMed] [Google Scholar]
  • 54.Wiest R, Tsai MH, Groszmann RJ. Octreotide potentiates PKCdependent vasoconstrictors in portal-hypertensive and control rats. Gastroenterology. 2001;120:975–983. doi: 10.1053/gast.2001.22529. [DOI] [PubMed] [Google Scholar]
  • 55.Mejias M, Garcia-Pras E, Tiani C, Bosch J, Fernandez M. The somatostatin analogue octreotide inhibits angiogenesis in the earliest, but not in advanced, stages of portal hypertension in rats. J Cell Mol Med. 2008;12:1690–1699. doi: 10.1111/j.1582-4934.2008.00218.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Salmeron JM, Arbol LRD, Gines A, Garc JC. Renal effects of acute isosorbide-5-mononitrate administration in cirrhosis. Hepatology. 1993;17:800–806. [PubMed] [Google Scholar]
  • 57.Liu S, Premont RT, Kontos CD, Zhu S, Rockey DC. A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat Med. 2005;11:952–958. doi: 10.1038/nm1289. [DOI] [PubMed] [Google Scholar]
  • 58.Kureishi Y, Luo Z, Shiojima I. The HMG-CoA reducíase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med. 2000;6:1004–1010. doi: 10.1038/79510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Feron O, Dessy C, Desager JP, Balligand JL. Hydroxy-methylglutaryl-coenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation. 2001;103:113–118. doi: 10.1161/01.cir.103.1.113. [DOI] [PubMed] [Google Scholar]
  • 60.Zafra C, Abraldes JG, Turnes J. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology. 2004;126:749–755. doi: 10.1053/j.gastro.2003.12.007. [DOI] [PubMed] [Google Scholar]
  • 61.Abraldes JG, Albillos A, Bañares R. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial. Gastroenterology. 2009;136:1651–1658. doi: 10.1053/j.gastro.2009.01.043. [DOI] [PubMed] [Google Scholar]
  • 62.Bosch J. Carvedilol for portal hypertension in patients with cirrhosis. Hepatology. 2010;51:2214–2218. doi: 10.1002/hep.23689. [DOI] [PubMed] [Google Scholar]
  • 63.Banares R, Moitinho E, Piqueras B. Carvedilol, a new non-selective beta-blocker with intrinsic anti-Alpha1-adrenergic activity, has a greater portal hypotensive effect than propranolol in patients with cirrhosis. Hepatology. 1999;30:79–83. doi: 10.1002/hep.510300124. [DOI] [PubMed] [Google Scholar]
  • 64.Banares R, Moitinho E, Matilla A. Randomized comparison of long-term carvedilol and propranolol administration in the treatment of portal hypertension in cirrhosis. Hepatology. 2002;36:1367–1373. doi: 10.1053/jhep.2002.36947. [DOI] [PubMed] [Google Scholar]
  • 65.Tripathi D, Ferguson JW, Kochar N. Randomized controlled trial of carvedilol versus variceal band ligation for the prevention of the first variceal bleed. Hepatology. 2009;50:825–833. doi: 10.1002/hep.23045. [DOI] [PubMed] [Google Scholar]
  • 66.Garcia-Pagan JC, Bosch J, Rodes J. The role of vasoactive mediators in portal hypertension. Semin Gastrointest Dis. 1995;6:140–147. [PubMed] [Google Scholar]
  • 67.Ballet F, Chretien Y, Rey C, Poupon R. Differential response of normal and cirrhotic liver to vasoactive agents. A study in the isolated perfused rat liver. J Pharmacol Exp Ther. 1988;244:283–289. [PubMed] [Google Scholar]
  • 68.Helmy A, Jalan R, Newby DE, Hayes PC, Webb DJ. Role of angiotensin II in regulation of basal and sympathetically stimulated vascular tone in early and advanced cirrhosis. Gastroenterology. 2000;118:565–572. doi: 10.1016/s0016-5085(00)70263-0. [DOI] [PubMed] [Google Scholar]
  • 69.Jalan R, Hayes PC. Sodium handling in patients with well compensated cirrhosis is dependent on the severity of liver disease and portal pressure. Gut. 2000;46:527–533. doi: 10.1136/gut.46.4.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Girgrah N, Liu P, Collier J, Blendis L, Wong F. Haemodynamic, renal sodium handling, and neurohormonal effects of acute administration of low dose losarían, an angiotensin II receptor antagonist, in preascitic cirrhosis. Gut. 2000;46:114–120. doi: 10.1136/gut.46.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Goodfriend TL, Elliott ME, Catt KJ. Angiotensin receptors and their antagonists. N Engl J Med. 1996;334:1649–1654. doi: 10.1056/NEJM199606203342507. [DOI] [PubMed] [Google Scholar]
  • 72.Bataller R, Ginès P, Nicolas JM. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000;118:1149–1156. doi: 10.1016/s0016-5085(00)70368-4. [DOI] [PubMed] [Google Scholar]
  • 73.Arroyo V, Bosch J, Mauri M, Ribera F, Navarro-Lápez F, Rodés J. Effect of angiotensin-II blockade on systemic and hepatic haemo-dynamics and on the renin-angiotensin-aldosterone system in cirrhosis with ascites. Eur J Clin Invest. 1981;11:221–229. doi: 10.1111/j.1365-2362.1981.tb01844.x. [DOI] [PubMed] [Google Scholar]
  • 74.Pariente EA, Bataille C, Bercoff E, Lebrec D. Acute effects of captopril on systemic and renal hemodynamics and on renal function in cirrhotic patients with ascites. Gastroenterology. 1985;88:1255–1259. doi: 10.1016/s0016-5085(85)80088-3. [DOI] [PubMed] [Google Scholar]
  • 75.Schneider AW, Kalk JF, Klein CP. Effect of losarían, an angiotensin II receptor antagonist on porlal pressure in cirrhosis. Hepatology. 1999;29:334–339. doi: 10.1002/hep.510290203. [DOI] [PubMed] [Google Scholar]
  • 76.Schepke M, Werner E, Biecker E. Hemodynamic effects of the angiotensin II receptor antagonist irbesartan in patients with cirrhosis and portal hypertension. Gastroenterology. 2001;121:389–395. doi: 10.1053/gast.2001.26295. [DOI] [PubMed] [Google Scholar]
  • 77.Gonzalez-Abraldes J, Albulos A, Bañares R. Randomized comparison of long-term losarían versus propranolol in lowering portal pressure in cirrhosis. Gastroenterology. 2001;121:382–388. doi: 10.1053/gast.2001.26288. [DOI] [PubMed] [Google Scholar]
  • 78.Pradere JP, Troeger JS, Dapito DH, Mencin AA, Schwabe RF. Tolllike receptor 4 and hepatic fibrogenesis. Semin Liver Dis. 2010;30:232–244. doi: 10.1055/s-0030-1255353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Szabo G, Dolganiuc A, Mandrekar P. Pattern recognition receptors: a contemporary view on liver diseases. Hepatology. 2006;44:287–298. doi: 10.1002/hep.21308. [DOI] [PubMed] [Google Scholar]
  • 80.Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair. 2010;3:21. doi: 10.1186/1755-1536-3-21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Jagavelu K. Endothelial cell toll-like receptor 4 regulates fibrosis-associated angiogenesis in the liver. Hepatology. 2010;52:590–601. doi: 10.1002/hep.23739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Fernandez M, Mejias M, Garcia-Pras E, Méndez R, Garcia-Pagan JC, Bosch J. Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. Hepatology. 2007;46:1208–1217. doi: 10.1002/hep.21785. [DOI] [PubMed] [Google Scholar]
  • 83.Reiberger T, Angermayr B, Schwabl P. Sorafenib attenuates the portal hypertensive syndrome in partial portal vein ligated rats. J Hepatol. 2009;51:865–873. doi: 10.1016/j.jhep.2009.06.024. [DOI] [PubMed] [Google Scholar]
  • 84.Tugues S, Fernandez-Varo G, Muñoz-Luque J. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibro-sis, and portal pressure in cirrhotic rats. Hepatology. 2007;46:1919–1926. doi: 10.1002/hep.21921. [DOI] [PubMed] [Google Scholar]
  • 85.Van Steenkiste C, Geerts A, Vanheule E. Role of placental growth factor in mesenteric neoangiogenesis in a mouse model of portal hypertension. Gastroenterology. 2009;137:2112–2124. doi: 10.1053/j.gastro.2009.08.068. e2111-6. [DOI] [PubMed] [Google Scholar]
  • 86.Steenkiste CV, Ribera J, Geerts A. Inhibition of placental growth factor activity reduces the severity of fibrosis, inflammation, and portal hypertension in cirrhotic mice. Hepatology. 2011;53:1629–1640. doi: 10.1002/hep.24238. [DOI] [PubMed] [Google Scholar]
  • 87.Autiero M, Luttun A, Tjwa M, Carmeliet P. Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost. 2003;1:1356–1370. doi: 10.1046/j.1538-7836.2003.00263.x. [DOI] [PubMed] [Google Scholar]
  • 88.Ball SG, Bayley C, Shuttleworth CA, Kielty CM. Neuropilin-1 regulates platelet-derived growth factor receptor signalling in mesen-chymal stem cells. Biochem J. 2010;427:29–40. doi: 10.1042/BJ20091512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Cao S, Yaqoob U, Das A. Neuropilin-1 promotes cirrhosis of the rodent and human liver by enhancing PDGF/TGF-beta signaling in hepatic stellate cells. J Clin Invest. 2010;120:2379–2394. doi: 10.1172/JCI41203. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical and Experimental Hepatology are provided here courtesy of Elsevier

RESOURCES