Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jun;80(11):3301–3304. doi: 10.1073/pnas.80.11.3301

Ribonuclease BN: identification and partial characterization of a new tRNA processing enzyme.

P K Asha, R T Blouin, R Zaniewski, M P Deutscher
PMCID: PMC394029  PMID: 6344080

Abstract

A new ribonuclease, RNase BN, has been identified and partially purified from a strain of Escherichia coli lacking RNase II and RNase D by using the artificial tRNA precursor tRNA-C-[14C]U as substrate. This enzyme is present in E. coli B but absent from the tRNA processing mutant strain BN which is unable to process extraneous 3' residues on certain phage T4-specified tRNA precursors. The properties of RNase BN clearly distinguish this enzyme from other known E. coli exoribonucleases. It is optimally active at pH 6.5 with 0.2 mM divalent cation and 0.2 M monovalent cation. It is most active against tRNA substrates containing nucleotide substitutions within the -C-C-A sequence and relatively inactive against other types of RNAs. This substrate specificity in vitro is consistent with a processing function in vivo. However, in contrast to the other processing enzymes whose function has been confirmed by mutation, RNase BN is an exoribonuclease. The presence of multiple RNases in E. coli and a strategy for their identification and separation are discussed.

Full text

PDF
3301

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann B. J., Low K. B. Linkage map of Escherichia coli K-12, edition 6. Microbiol Rev. 1980 Mar;44(1):1–56. doi: 10.1128/mr.44.1.1-56.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blouin R. T., Zaniewski R., Deutscher M. P. Ribonuclease D is not essential for the normal growth of Escherichia coli or bacteriophage T4 or for the biosynthesis of a T4 suppressor tRNA. J Biol Chem. 1983 Feb 10;258(3):1423–1426. [PubMed] [Google Scholar]
  3. Cudny H., Deutscher M. P. Apparent involvement of ribonuclease D in the 3' processing of tRNA precursors. Proc Natl Acad Sci U S A. 1980 Feb;77(2):837–841. doi: 10.1073/pnas.77.2.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cudny H., Zaniewski R., Deutscher M. P. Escherichia coli RNase D. Catalytic properties and substrate specificity. J Biol Chem. 1981 Jun 10;256(11):5633–5637. [PubMed] [Google Scholar]
  5. Cudny H., Zaniewski R., Deutscher M. P. Escherichia coli RNase D. Purification and structural characterization of a putative processing nuclease. J Biol Chem. 1981 Jun 10;256(11):5627–5632. [PubMed] [Google Scholar]
  6. Deutscher M. P., Ghosh R. K. Preparation of synthetic tRNA precursors with tRNA nucleotidyltransferase. Nucleic Acids Res. 1978 Oct;5(10):3821–3829. doi: 10.1093/nar/5.10.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ghosh R. K., Deutscher M. P. Identification of an Escherichia coli nuclease acting on structurally altered transfer RNA molecules. J Biol Chem. 1978 Feb 25;253(4):997–1000. [PubMed] [Google Scholar]
  8. Ghosh R. K., Deutscher M. P. Purification of potential 3' processing nucleases using synthetic tRNA precursors. Nucleic Acids Res. 1978 Oct;5(10):3831–3842. doi: 10.1093/nar/5.10.3831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gupta R. S., Kasai T., Schlessinger D. Purification and some novel properties of Escherichia coli RNase II. J Biol Chem. 1977 Dec 25;252(24):8945–8949. [PubMed] [Google Scholar]
  10. Maisurian A. N., Buyanovskaya E. A. Isolation of an Escherichia coli strain restricting bacteriophage suppressor. Mol Gen Genet. 1973 Feb 2;120(3):227–229. doi: 10.1007/BF00267154. [DOI] [PubMed] [Google Scholar]
  11. Moen T. L., Seidman J. G., McClain W. H. A catalogue of transfer RNA-like molecules synthesized following infection of Escherichia coli by T-even bacteriophages. J Biol Chem. 1978 Nov 10;253(21):7910–7917. [PubMed] [Google Scholar]
  12. Nikolaev N., Folsom V., Schlessinger D. Escherichia coli mutants deficient in exoribonucleases. Biochem Biophys Res Commun. 1976 Jun 7;70(3):920–924. doi: 10.1016/0006-291x(76)90679-3. [DOI] [PubMed] [Google Scholar]
  13. Roy P., Cudny H., Deutscher M. P. The transfer RNA processing defect in Escherichia coli strains BN and CAN is not due to a mutation in RNAase D or RNAase II. J Mol Biol. 1982 Jul 25;159(1):179–187. doi: 10.1016/0022-2836(82)90038-9. [DOI] [PubMed] [Google Scholar]
  14. Schmidt F. J., McClain W. H. An Escherichia coli ribonuclease which removes an extra nucleotide from a biosynthetic intermediate of bacteriophage T4 proline transfer RNA. Nucleic Acids Res. 1978 Nov;5(11):4129–4139. doi: 10.1093/nar/5.11.4129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Seidman J. G., Schmidt F. J., Foss K., McClain W. H. A mutant of escherichia coli defective in removing 3' terminal nucleotides from some transfer RNA precursor molecules. Cell. 1975 Aug;5(4):389–400. doi: 10.1016/0092-8674(75)90058-6. [DOI] [PubMed] [Google Scholar]
  16. Zaniewski R., Deutscher M. P. Genetic mapping of mutation in Escherichia coli leading to a temperature-sensitive RNase D. Mol Gen Genet. 1982;185(1):142–147. doi: 10.1007/BF00333804. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES