Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jun;80(11):3318–3321. doi: 10.1073/pnas.80.11.3318

Vectorial synthesis of a polysaccharide by isolated plasma membranes.

E Cabib, B Bowers, R L Roberts
PMCID: PMC394033  PMID: 6222377

Abstract

To ascertain the directionality of chitin synthesis by yeast plasma membranes, the external surface of Saccharomyces cerevisiae protoplasts was labeled with ferritin--concanavalin A. After protoplast lysis, plasma membranes were isolated and treated with trypsin to activate chitin synthase (UDP-2-acetamido-2-deoxy-D-glucose:chitin 4-beta-acetamidodeoxy-D-glucosyl-transferase, EC 2.4.1.16). The membranes were then enrobed in agar and allowed to synthesize chitin from UDP-N-acetylglucosamine. After fixation and embedding in Epon, thin sections were stained for chitin with wheat germ agglutinin--colloidal gold complexes. The chitin marker was found near the ferritin-labeled external face of the membrane--i.e., the polysaccharide was located on the outside of the membrane, as it is in the intact cell. Chitin synthase activity was not detected in intact protoplasts before or after treatment with trypsin. The enzyme became available to trypsin activation after lysis of the protoplasts. Together with similar, previously reported experiments on the inactivation of chitin synthase by glutaraldehyde, these results indicate that the enzyme faces the interior of the cell. We conclude that, both in vivo and in vitro, the synthase receives N-acetylglucosamine residues from UDP-N-acetylglucosamine at the cytoplasmic face of the membrane and transfers them vectorially to a growing chain of chitin that is concomitantly extruded to the outside.

Full text

PDF
3318

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowers B., Levin G., Cabib E. Effect of polyoxin D on chitin synthesis and septum formation in Saccharomyces cerevisiae. J Bacteriol. 1974 Aug;119(2):564–575. doi: 10.1128/jb.119.2.564-575.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bracker C. E., Ruiz-Herrera J., Bartnicki-Garcia S. Structure and transformation of chitin synthetase particles (chitosomes) during microfibril synthesis in vitro. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4570–4574. doi: 10.1073/pnas.73.12.4570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cabib E., Roberts R., Bowers B. Synthesis of the yeast cell wall and its regulation. Annu Rev Biochem. 1982;51:763–793. doi: 10.1146/annurev.bi.51.070182.003555. [DOI] [PubMed] [Google Scholar]
  4. Duran A., Cabib E., Bowers B. Chitin synthetase distribution on the yeast plasma membrane. Science. 1979 Jan 26;203(4378):363–365. doi: 10.1126/science.366747. [DOI] [PubMed] [Google Scholar]
  5. Duran A., Cabib E. Solubilization and partial purification of yeast chitin synthetase. Confirmation of the zymogenic nature of the enzyme. J Biol Chem. 1978 Jun 25;253(12):4419–4425. [PubMed] [Google Scholar]
  6. Durán A., Bowers B., Cabib E. Chitin synthetase zymogen is attached to the yeast plasma membrane. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3952–3955. doi: 10.1073/pnas.72.10.3952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldstein I. J., Hayes C. E. The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem. 1978;35:127–340. doi: 10.1016/s0065-2318(08)60220-6. [DOI] [PubMed] [Google Scholar]
  8. Haigler C. H., Brown R. M., Jr, Benziman M. Calcofluor white ST Alters the in vivo assembly of cellulose microfibrils. Science. 1980 Nov 21;210(4472):903–906. doi: 10.1126/science.7434003. [DOI] [PubMed] [Google Scholar]
  9. Keller F. A., Cabib E. Chitin and yeast budding. Properties of chitin synthetase from Saccharomyces carlsbergensis. J Biol Chem. 1971 Jan 10;246(1):160–166. [PubMed] [Google Scholar]
  10. Molano J., Bowers B., Cabib E. Distribution of chitin in the yeast cell wall. An ultrastructural and chemical study. J Cell Biol. 1980 May;85(2):199–212. doi: 10.1083/jcb.85.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Novick P., Field C., Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980 Aug;21(1):205–215. doi: 10.1016/0092-8674(80)90128-2. [DOI] [PubMed] [Google Scholar]
  12. Osborn M. J. Structure and biosynthesis of the bacterial cell wall. Annu Rev Biochem. 1969;38:501–538. doi: 10.1146/annurev.bi.38.070169.002441. [DOI] [PubMed] [Google Scholar]
  13. Ruiz-Herrera J., Lopez-Romero E., Bartnicki-Garcia S. Properties of chitin synthetase in isolated chitosomes from yeast cells of Mucor rouxii. J Biol Chem. 1977 May 25;252(10):3338–3343. [PubMed] [Google Scholar]
  14. Shematek E. M., Braatz J. A., Cabib E. Biosynthesis of the yeast cell wall. I. Preparation and properties of beta-(1 leads to 3)glucan synthetase. J Biol Chem. 1980 Feb 10;255(3):888–894. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES