Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jun;80(11):3372–3376. doi: 10.1073/pnas.80.11.3372

Development of basal and induced aryl hydrocarbon (benzo[a]pyrene) hydroxylase activity in the chicken embryo in ovo.

J W Hamilton, M S Denison, S E Bloom
PMCID: PMC394045  PMID: 6407011

Abstract

The development of the hepatic microsomal mixed-function oxidase system was studied to determine the basal level of embryonic enzyme activity and the inducibility of this system throughout growth and differentiation. Chicken embryo livers were assayed for basal and inducible hepatic aryl hydrocarbon hydroxylase (AHHase; designated elsewhere as AHH) activity from the first appearance of the liver as a discrete organ at 5 days of incubation (DI) through day 10 after hatching. In addition, whole-embryo and viscera preparations were assayed at 3 and 4 DI. Basal AHHase activity was equal to or greater than adult levels from 3 DI through hatching in all preparations (approximately 0.3-0.5 nmol/min per mg). A 3-fold increase in basal activity above adult values occurred at hatching. The onset of inducibility in chicken embryo liver between 5 and 6 DI was concomitant with hepatocyte differentiation. A developmental profile of 24-hr 3,4,3', 4'-tetrachlorobiphenyl-induced AHHase activity showed 15- to 30-fold induction over controls from 7 DI through day 10 after hatching, with a maximum of 15 nmol/min per mg at 14 DI and day 1 after hatching, a specific activity greater than 50% greater than maximal induction in the adult. Embryonic AHHase activity was also induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin, 3-methylcholanthrene, beta-naphthoflavone, and sodium phenobarbital. Induction kinetics throughout embryonic development were similar to those reported for the adult chicken and other animals. These findings demonstrate development of a mixed-function oxidase system in very early embryogenesis and then in the liver as it differentiates. Liver AHHase activity is inducible throughout development and perinatally but such activity is under strict developmental regulation. The chicken embryo has adult levels of AHHase activity which would be sufficient to achieve metabolic activation of promutagens/carcinogens before and after hepatocyte differentiation.

Full text

PDF
3372

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atlas S. A., Boobis A. R., Felton J. S., Thorgeirsson S. S., Nebert D. W. Ontogenetic expression of polycyclic aromatic compound-inducible monooxygenase activities and forms of cytochrome P-450 in rabbit. Evidence for temporal control and organ specificity of two genetic regulatory systems. J Biol Chem. 1977 Jul 10;252(13):4712–4721. [PubMed] [Google Scholar]
  2. Baker F. D., Tumasonis C. F., Barron J. The effect of carbon monoxide inhalation on the mixed-function oxidase activity in the chick embryo and the adult mouse. Bull Environ Contam Toxicol. 1973 Jun;9(6):329–336. doi: 10.1007/BF01685082. [DOI] [PubMed] [Google Scholar]
  3. Banjo A. O., Nemeth A. M. Proliferation of endoplasmic reticulum with its enzyme, UDP-glucuronyltransferase, in chick embryo liver during culture. Effects of phenobarbital. J Cell Biol. 1976 Aug;70(2 Pt 1):319–325. doi: 10.1083/jcb.70.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bloom S. E., Hsu T. C. Differential fluorescence of sister chromatids in chicken embryos exposed to 5-bromodeoxyuridine. Chromosoma. 1975 Jul 21;51(3):261–267. doi: 10.1007/BF00284819. [DOI] [PubMed] [Google Scholar]
  5. Burchell B., Dutton G. J., Nemeth A. M. Development of phenobarbital-sensitive control mechanisms for uridine diphosphate glucuronyltransferase activity in chick embryo liver. J Cell Biol. 1972 Nov;55(2):448–456. doi: 10.1083/jcb.55.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cecil H. C., Harris S. J., Bitman J. Liver mixed function oxidases in chickens: induction by polychlorinated biphenyls and lack of induction by DDT. Arch Environ Contam Toxicol. 1978;7(3):283–290. doi: 10.1007/BF02332056. [DOI] [PubMed] [Google Scholar]
  7. Chhabra R. S., Tredger J. M., Philpot R. M., Fouts J. R. Relationship between induction of aryl hydrocarbon hydroxylase and de novo synthesis of cytochrome P-448 (P1-450) in mice. Chem Biol Interact. 1976 Sep;15(1):21–31. doi: 10.1016/0009-2797(76)90125-3. [DOI] [PubMed] [Google Scholar]
  8. Drummond A. H., McCall J. M., Jondorf W. R. Some factors affecting liver microsomal drug metabolism in the chicken. Biochem J. 1972 Nov;130(2):73P–74P. doi: 10.1042/bj1300073p. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elcombe C. R., Lech J. J. Induction and characterization of hemoprotein(s) P-450 and monooxygenation in rainbow trout (Salmo gairdneri). Toxicol Appl Pharmacol. 1979 Jul;49(3):437–450. doi: 10.1016/0041-008x(79)90444-7. [DOI] [PubMed] [Google Scholar]
  10. Filler R., Lew K. J. Developmental onset of mixed-function oxidase activity in preimplantation mouse embryos. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6991–6995. doi: 10.1073/pnas.78.11.6991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Galloway S. M., Perry P. E., Meneses J., Nebert D. W., Pedersen R. A. Cultured mouse embryos metabolize benzo[a]pyrene during early gestation: genetic differences detectable by sister chromatid exchange. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3524–3528. doi: 10.1073/pnas.77.6.3524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greenlee W. F., Poland A. Nuclear uptake of 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J and DBA/2J mice. Role of the hepatic cytosol receptor protein. J Biol Chem. 1979 Oct 10;254(19):9814–9821. [PubMed] [Google Scholar]
  13. Guenthner T. M., Nebert D. W. Evidence in rat and mouse liver for temporal control of two forms of cytochrome P-450 inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Eur J Biochem. 1978 Nov 15;91(2):449–456. doi: 10.1111/j.1432-1033.1978.tb12697.x. [DOI] [PubMed] [Google Scholar]
  14. Haug L. T., Dybing E., Thorgeirsson S. S. Developmental aspects of 2-acetamidofluorene metabolism and mutagenic activation in the chick. Xenobiotica. 1980 Dec;10(12):863–872. doi: 10.3109/00498258009033820. [DOI] [PubMed] [Google Scholar]
  15. Jondorf W. R., MacIntyre D. E., Powis G. Induction of liver microsomal drug metabolism in newly-hatched chicks. Br J Pharmacol. 1973 Mar;47(3):624P–625P. [PMC free article] [PubMed] [Google Scholar]
  16. Juchau M. R., Pedersen M. G. Drug biotransformation reactions in the human fetal adrenal gland. Life Sci II. 1973 Mar 8;12(5):193–204. doi: 10.1016/0024-3205(73)90347-0. [DOI] [PubMed] [Google Scholar]
  17. Kahl G. F., Friederici D. E., Bigelow S. W., Okey A. B., Nebert D. W. Ontogenetic expression of regulatory and structural gene products associated with the Ah locus. Comparison of rat, mouse, rabbit and Sigmoden hispedis. Dev Pharmacol Ther. 1980;1(2-3):137–162. [PubMed] [Google Scholar]
  18. Kato R. Characteristics and differences in the hepatic mixed function oxidases of different species. Pharmacol Ther. 1979;6(1):41–98. doi: 10.1016/0163-7258(79)90056-1. [DOI] [PubMed] [Google Scholar]
  19. Kuenzig W., Kamm J. J., Boublik M., Jenkins F., Burns J. J. Perinatal drug metabolism and morphological changes in the hepatocytes of normal and phenobarbital-treated guinea pigs. J Pharmacol Exp Ther. 1974 Oct;191(1):32–44. [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Mitani F., Alvares A. P., Sassa S., Kappas A. Preparation and properties of a solubilized form of cytochrome P-450 from chick embryo liver microsomes. Mol Pharmacol. 1971 May;7(3):280–292. [PubMed] [Google Scholar]
  22. Nash K. L., Chiang J. Y., Steggles A. W. The effect of beta-naphthoflavone on rabbit liver protein synthesis, and on the induction of cytochrome P-450 LM4 mRNA. Biochem Biophys Res Commun. 1981 Jun 16;100(3):1111–1117. doi: 10.1016/0006-291x(81)91938-0. [DOI] [PubMed] [Google Scholar]
  23. Nebert D. W., Eisen H. J., Negishi M., Lang M. A., Hjelmeland L. M., Okey A. B. Genetic mechanisms controlling the induction of polysubstrate monooxygenase (P-450) activities. Annu Rev Pharmacol Toxicol. 1981;21:431–462. doi: 10.1146/annurev.pa.21.040181.002243. [DOI] [PubMed] [Google Scholar]
  24. Neims A. H., Warner M., Loughnan P. M., Aranda J. V. Developmental aspects of the hepatic cytochrome P450 monooxygenase system. Annu Rev Pharmacol Toxicol. 1976;16:427–445. doi: 10.1146/annurev.pa.16.040176.002235. [DOI] [PubMed] [Google Scholar]
  25. Nemeth A. M. The regulation of liver development by birth. Enzyme. 1973;15(1):286–295. [PubMed] [Google Scholar]
  26. Okey A. B., Bondy G. P., Mason M. E., Kahl G. F., Eisen H. J., Guenthner T. M., Nebert D. W. Regulatory gene product of the Ah locus. Characterization of the cytosolic inducer-receptor complex and evidence for its nuclear translocation. J Biol Chem. 1979 Nov 25;254(22):11636–11648. [PubMed] [Google Scholar]
  27. Okey A. B., Bondy G. P., Mason M. E., Nebert D. W., Forster-Gibson C. J., Muncan J., Dufresne M. J. Temperature-dependent cytosol-to-nucleus translocation of the Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in continuous cell culture lines. J Biol Chem. 1980 Dec 10;255(23):11415–11422. [PubMed] [Google Scholar]
  28. Owens I. S., Nebert D. W. Aryl hydrocarbon hydroxylase induction in mammalian liver-derived cell cultures. Stimulation of "cytochrome P1-450-associated" enzyme activity by many inducing compounds. Mol Pharmacol. 1975 Jan;11(1):94–104. [PubMed] [Google Scholar]
  29. Poland A., Glover E. Chlorinated biphenyl induction of aryl hydrocarbon hydroxylase activity: a study of the structure-activity relationship. Mol Pharmacol. 1977 Sep;13(5):924–938. [PubMed] [Google Scholar]
  30. Poland A., Glover E. Chlorinated dibenzo-p-dioxins: potent inducers of delta-aminolevulinic acid synthetase and aryl hydrocarbon hydroxylase. II. A study of the structure-activity relationship. Mol Pharmacol. 1973 Nov;9(6):736–747. [PubMed] [Google Scholar]
  31. Poland A., Glover E., Kende A. S. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem. 1976 Aug 25;251(16):4936–4946. [PubMed] [Google Scholar]
  32. Poland A., Kende A. 2,3,7,8-Tetrachlorodibenzo-p-dioxin: environmental contaminant and molecular probe. Fed Proc. 1976 Oct;35(12):2404–2411. [PubMed] [Google Scholar]
  33. Powis G., Drummond A. H., Macintyre D. E., Jondorf W. R. Development of liver microsomal oxidations in the chick. Xenobiotica. 1976 Feb;6(2):69–81. doi: 10.3109/00498257609151616. [DOI] [PubMed] [Google Scholar]
  34. Rifkind A. B., Bennett S., Forster E. S., New M. I. Components of the heme biosynthetic pathway and mixed function oxidase activity in human fetal tissues. Biochem Pharmacol. 1975 Apr 15;24(8):839–846. doi: 10.1016/0006-2952(75)90151-3. [DOI] [PubMed] [Google Scholar]
  35. Rifkind A. B., Gillette P. N., Song C. S., Kappas A. Drug stimulation of -aminolevulinic acid synthetase and cytochrome P-450 in vivo in chick embryo liver. J Pharmacol Exp Ther. 1973 May;185(2):214–225. [PubMed] [Google Scholar]
  36. Rifkind A. B., Troeger M., Petschke T. Equality of the rates of mixed function oxidation in livers of male and female chick embryos. Biochem Pharmacol. 1979 May 15;28(10):1681–1683. doi: 10.1016/0006-2952(79)90184-9. [DOI] [PubMed] [Google Scholar]
  37. Short C. R., Kinden D. A., Stith R. Fetal and neonatal development of the microsomal monooxygenase system. Drug Metab Rev. 1976;5(1):1–42. doi: 10.3109/03602537608995838. [DOI] [PubMed] [Google Scholar]
  38. Todd L. A., Bloom S. E. Differential induction of sister chromatid exchanges by indirect-acting mutagen-carcinogens at early and late stages of embryonic development. Environ Mutagen. 1980;2(4):435–445. doi: 10.1002/em.2860020402. [DOI] [PubMed] [Google Scholar]
  39. Tometsko A. M., Sheridan K. M., DeTraglia M. C. Promutagen activation with mammalian and avian S9 liver microsomes. J Appl Toxicol. 1981 Feb;1(1):11–14. doi: 10.1002/jat.2550010104. [DOI] [PubMed] [Google Scholar]
  40. Yang C. S., Kicha L. P. A direct fluorometric assay of benzo[a]pyrene hydroxylase. Anal Biochem. 1978 Jan;84(1):154–163. doi: 10.1016/0003-2697(78)90494-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES