Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jun;80(11):3489–3493. doi: 10.1073/pnas.80.11.3489

Lecithin:cholesterol acyltransferase-mediated modification of discoidal peripheral lymph high density lipoproteins: possible mechanism of formation of cholesterol-induced high density lipoproteins (HDLc) in cholesterol-fed dogs.

L Dory, C H Sloop, L M Boquet, R L Hamilton, P S Roheim
PMCID: PMC394070  PMID: 6574494

Abstract

Peripheral lymph high density lipoproteins (HDL) of the cholesterol-fed dog differ in a number of characteristics from plasma HDL of the same animal. Their high content of free cholesterol, phospholipid, apoprotein E, and apoprotein A-IV, their greater heterogeneity in size, and the presence of many discoidal particles suggest that a portion of lymph HDL is assembled within the interstitial fluid. The present experiments demonstrate that the endogenous lecithin:cholesterol acyltransferase (LCAT) activity of whole peripheral lymph of the cholesterol-fed dog is far less (less than 1%) than that found in the plasma of the same animal (0.3 nmol/hr per ml versus 40.6 nmol/hr per ml). Addition of partially purified LCAT to whole lymph induced many changes in the chemical composition of peripheral lymph lipoproteins. After incubation with LCAT, the free cholesterol and phospholipid contents of lymph HDL decreased, from 17% to 12% and from 46% to 33%, respectively, whereas cholesteryl ester content increased from 7% to 13%. These changes were accompanied by a mass transfer of apoprotein E and cholesterol to the p less than 1.05 g/ml fraction, the complete disappearance of the discoidal particles, and a decrease in size heterogeneity of lymph HDL. These results suggest that, in the cholesterol-fed dog, cholesterol efflux into the interstitial spaces may occur in the absence of significant LCAT activity. Furthermore, our studies suggest that the subsequent reaction between lymph HDL and LCAT within the vascular compartment leads to the generation of apoprotein E and cholesteryl ester-rich cholesterol-induced HDL.

Full text

PDF
3489

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Basu S. K., Brown M. S., Ho Y. K., Havel R. J., Goldstein J. L. Mouse macrophages synthesize and secrete a protein resembling apolipoprotein E. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7545–7549. doi: 10.1073/pnas.78.12.7545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen C. H., Albers J. J. Further characterization of purified lecithin: cholesterol acyltransferase from human plasma. Biochem Med. 1981 Apr;25(2):215–226. doi: 10.1016/0006-2944(81)90078-8. [DOI] [PubMed] [Google Scholar]
  5. Day R. C., Harry D. S., Owen J. S., Foo A. Y., McIntyre N. Lecithin-cholesterol acyltransferase and the lipoprotein abnormalities of parenchymal liver disease. Clin Sci (Lond) 1979 Jan;56(6):575–583. doi: 10.1042/cs0560575. [DOI] [PubMed] [Google Scholar]
  6. Fielding C. J., Fielding P. E. Cholesterol transport between cells and body fluids. Role of plasma lipoproteins and the plasma cholesterol esterification system. Med Clin North Am. 1982 Mar;66(2):363–373. doi: 10.1016/s0025-7125(16)31425-0. [DOI] [PubMed] [Google Scholar]
  7. Forte T., Norum K. R., Glomset J. A., Nichols A. V. Plasma lipoproteins in familial lecithin: cholesterol acyltransferase deficiency: structure of low and high density lipoproteins as revealed by elctron microscopy. J Clin Invest. 1971 May;50(5):1141–1148. doi: 10.1172/JCI106586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GLOMSET J. A., WRIGHT J. L. SOME PROPERTIES OF A CHOLESTEROL ESTERIFYING ENZYME IN HUMAN PLASMA. Biochim Biophys Acta. 1964 Aug 26;89:266–276. doi: 10.1016/0926-6569(64)90215-9. [DOI] [PubMed] [Google Scholar]
  9. Glomset J. A. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res. 1968 Mar;9(2):155–167. [PubMed] [Google Scholar]
  10. Green P. H., Tall A. R., Glickman R. M. Rat intestine secretes discoid high density lipoprotein. J Clin Invest. 1978 Feb;61(2):528–534. doi: 10.1172/JCI108963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guo L. S., Hamilton R. L., Ostwald R., Havel R. J. Secretion of nascent lipoproteins and apolipoproteins by perfused livers of normal and cholesterol-fed guinea pigs. J Lipid Res. 1982 May;23(4):543–555. [PubMed] [Google Scholar]
  12. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ha Y. C., Barter P. J. Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp Biochem Physiol B. 1982;71(2):265–269. doi: 10.1016/0305-0491(82)90252-8. [DOI] [PubMed] [Google Scholar]
  14. Hamilton R. L., Williams M. C., Fielding C. J., Havel R. J. Discoidal bilayer structure of nascent high density lipoproteins from perfused rat liver. J Clin Invest. 1976 Sep;58(3):667–680. doi: 10.1172/JCI108513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jansen H., van Tol A., Hülsmann W. C. On the metabolic function of heparin-releasable liver lipase. Biochem Biophys Res Commun. 1980 Jan 15;92(1):53–59. doi: 10.1016/0006-291x(80)91518-1. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Laurell C. B. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal Biochem. 1966 Apr;15(1):45–52. doi: 10.1016/0003-2697(66)90246-6. [DOI] [PubMed] [Google Scholar]
  18. Mahley R. W. Atherogenic hyperlipoproteinemia. The cellular and molecular biology of plasma lipoproteins altered by dietary fat and cholesterol. Med Clin North Am. 1982 Mar;66(2):375–402. doi: 10.1016/s0025-7125(16)31426-2. [DOI] [PubMed] [Google Scholar]
  19. Mahley R. W., Weisgraber K. H., Innerarity T. Canine lipoproteins and atherosclerosis. II. Characterization of the plasma lipoproteins associated with atherogenic and nonatherogenic hyperlipidemia. Circ Res. 1974 Nov;35(5):722–733. doi: 10.1161/01.res.35.5.722. [DOI] [PubMed] [Google Scholar]
  20. Mahley R. W., Weisgraber K. H., Innerarity T. Canine lipoproteins and atherosclerosis. II. Characterization of the plasma lipoproteins associated with atherogenic and nonatherogenic hyperlipidemia. Circ Res. 1974 Nov;35(5):722–733. doi: 10.1161/01.res.35.5.722. [DOI] [PubMed] [Google Scholar]
  21. Marcel Y. L., Bergseth M., Nestruck A. C. Preparative isoelectric focussing of apolipoproteins C and E from human very low density lipoproteins. Biochim Biophys Acta. 1979 Apr 27;573(1):175–183. doi: 10.1016/0005-2760(79)90184-x. [DOI] [PubMed] [Google Scholar]
  22. Mitchell C. D., King W. C., Applegate K. R., Forte T., Glomset J. A., Norum K. R., Gjone E. Characterization of apolipoprotein E-rich high density lipoproteins in familial lecithin:cholesterol acyltransferase deficiency. J Lipid Res. 1980 Jul;21(5):625–634. [PubMed] [Google Scholar]
  23. Mjos O. D., Faergeman O., Hamilton R. L., Havel R. J. Characterization of remnants produced during the metabolism of triglyceride-rich lipoproteins of blood plasma and intestinal lymph in the rat. J Clin Invest. 1975 Sep;56(3):603–615. doi: 10.1172/JCI108130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oram J. F., Albers J. J., Cheung M. C., Bierman E. L. The effects of subfractions of high density lipoprotein on cholesterol efflux from cultured fibroblasts. Regulation of low density lipoprotein receptor activity. J Biol Chem. 1981 Aug 25;256(16):8348–8356. [PubMed] [Google Scholar]
  25. Pocock D. M., Rafal S., Vost A. Separation of mammalian neutral lipids by chromatography on glass-fiber paper impregnated with silica gel. J Chromatogr Sci. 1972 Feb;10(2):72–76. doi: 10.1093/chromsci/10.2.72. [DOI] [PubMed] [Google Scholar]
  26. Renkin E. M., Watson P. D., Sloop C. H., Joyner W. M., Curry F. E. Transport pathways for fluid and large molecules in microvascular endothelium of the dog's paw. Microvasc Res. 1977 Sep;14(2):205–214. doi: 10.1016/0026-2862(77)90019-x. [DOI] [PubMed] [Google Scholar]
  27. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  28. Stein O., Stein Y. The removal of cholesterol from Landschütz ascites cells by high-density apolipoprotein. Biochim Biophys Acta. 1973 Nov 29;326(2):232–244. doi: 10.1016/0005-2760(73)90249-x. [DOI] [PubMed] [Google Scholar]
  29. Tall A. R., Small D. M. Body cholesterol removal: role of plasma high-density lipoproteins. Adv Lipid Res. 1980;17:1–51. [PubMed] [Google Scholar]
  30. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weidman S. W., Ragland J. B., Sabesin S. M. Plasma lipoprotein composition in alcoholic hepatitis: accumulation of apolipoprotein E-rich high density lipoprotein and preferential reappearance of "light'-HDL during partial recovery. J Lipid Res. 1982 May;23(4):556–569. [PubMed] [Google Scholar]
  32. van Tol A., van Gent T., Jansen H. Degradation of high density lipoprotein by heparin-releasable liver lipase. Biochem Biophys Res Commun. 1980 May 14;94(1):101–108. doi: 10.1016/s0006-291x(80)80193-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES