Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jun;80(11):3508–3512. doi: 10.1073/pnas.80.11.3508

Solubilization and characterization of high-affinity [3H]serotonin binding sites from bovine cortical membranes.

S R VandenBerg, R L Allgren, R D Todd, R D Ciaranello
PMCID: PMC394074  PMID: 6574495

Abstract

High-affinity [3H]serotonin binding activity has been solubilized from bovine cerebral cortical membranes by using Triton X-100, Tween-80, and octyl-beta-D-glucopyranoside. This mixture of detergents solubilizes the high-affinity [3H]serotonin binding activity present in crude membrane preparations with retention of 75-90% specific binding. The detergent mixture was chosen because it can easily be removed from the solubilized fraction by dialysis and polystyrene bead adsorption, thus permitting further purification and isolation of the binding sites. Saturation analysis reveals multiple components of high-affinity [3H]serotonin binding. In crude bovine cortical membranes, at least two binding components are present. A higher-affinity binding component, as defined from curvilinear Scatchard plots, has a Kd for [3H]serotonin of 1-3 nM, whereas a lower-affinity component has a Kd of 10-20 nM. In the solubilized preparation, only a single class of binding sites is apparent, with a Kd of 50-100 nM. Removal of detergents by dialysis and polystyrene bead adsorption results in restoration of the curvilinear Scatchard plot with apparent Kds similar to those observed in crude membrane preparations and with increased Bmax values for each component. [3H]Serotonin binding activity in the solubilized preparation is stable to Sephacryl S-300 column chromatography and to glycerol gradient sedimentation. Saturation analysis of the peak binding fractions from both these procedures once again yields curvilinear Scatchard plots, indicating that the multiple high-affinity binding components are preserved and migrate together. The molecular weight, Stokes radius, and frictional coefficient of the binding site(s) have been calculated. After detergent removal the solubilized material shows many of the characteristics usually attributed to S1 receptors, such as high affinity for [3H]serotonin and its analogs and low affinity for serotonin antagonists.

Full text

PDF
3508

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fillion G. M., Rousselle J. C., Fillion M. P., Beaudoin D. M., Goiny M. R., Deniau J. M., Jacob J. J. High-affinity binding of (3H) 5-hydroxytryptamine to brain synaptosomal membranes: comparison with (3H) lysergic acid diethylamide binding. Mol Pharmacol. 1978 Jan;14(1):50–59. [PubMed] [Google Scholar]
  2. Ilien B., Gorissen H., Laduron P. M. Characterization of solubilized serotonin (S2) receptors in rat brain. Mol Pharmacol. 1982 Sep;22(2):243–249. [PubMed] [Google Scholar]
  3. Ilien B., Gorissen H., Laduron P. Solubilization of serotonin receptors from rat frontal Cortex. Biochem Pharmacol. 1980 Dec;29(24):3341–3344. doi: 10.1016/0006-2952(80)90316-0. [DOI] [PubMed] [Google Scholar]
  4. Ilien B., Schotte A., Laduron P. M. Solubilized serotonin receptors from rat and dog brain. Selective labelling with [3H]ketanserin. FEBS Lett. 1982 Feb 22;138(2):311–315. doi: 10.1016/0014-5793(82)80468-7. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Lester B. R., Miller A. L., Peck E. J., Jr Differential solubilization of gamma-aminobutyric acid receptive sites from membranes of mammalian brain. J Neurochem. 1981 Jan;36(1):154–164. doi: 10.1111/j.1471-4159.1981.tb02390.x. [DOI] [PubMed] [Google Scholar]
  7. Nelson D. L., Herbet A., Enjalbert A., Bockaert J., Hamon M. Serotonin-sensitive adenylate cyclase and [3H]serotonin binding sites in the CNS of the rat--I. Biochem Pharmacol. 1980 Sep 15;29(18):2445–2453. doi: 10.1016/0006-2952(80)90348-2. [DOI] [PubMed] [Google Scholar]
  8. Peroutka S. J., Lebovitz R. M., Snyder S. H. Serotonin receptor binding sites affected differentially by guanine nucleotides. Mol Pharmacol. 1979 Nov;16(3):700–708. [PubMed] [Google Scholar]
  9. Peroutka S. J., Lebovitz R. M., Snyder S. H. Two distinct central serotonin receptors with different physiological functions. Science. 1981 May 15;212(4496):827–829. doi: 10.1126/science.7221567. [DOI] [PubMed] [Google Scholar]
  10. Peroutka S. J., Snyder S. H. Two distinct serotonin receptors: regional variations in receptor binding in mammalian brain. Brain Res. 1981 Mar 16;208(2):339–347. doi: 10.1016/0006-8993(81)90562-x. [DOI] [PubMed] [Google Scholar]
  11. Quach T. T., Rose C., Duchemin A. M., Schwartz J. C. Glycogenolysis induced by serotonin in brain: identification of a new class of receptor. Nature. 1982 Jul 22;298(5872):373–375. doi: 10.1038/298373a0. [DOI] [PubMed] [Google Scholar]
  12. Roberts M. H., Straughan D. W. Excitation and depression of cortical neurones by 5-hydroxytryptamine. J Physiol. 1967 Nov;193(2):269–294. doi: 10.1113/jphysiol.1967.sp008357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SCHAIN R. J., FREEDMAN D. X. Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J Pediatr. 1961 Mar;58:315–320. doi: 10.1016/s0022-3476(61)80261-8. [DOI] [PubMed] [Google Scholar]
  14. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  15. Siegel L. M., Monty K. J. Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim Biophys Acta. 1966 Feb 7;112(2):346–362. doi: 10.1016/0926-6585(66)90333-5. [DOI] [PubMed] [Google Scholar]
  16. Todd R. D., Griesenbeck T. A., Douglas M. G. The yeast mitochondrial adenosine triphosphatase complex. Subunit stoichiometry and physical characterization. J Biol Chem. 1980 Jun 10;255(11):5461–5467. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES