Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jun;80(11):3517–3521. doi: 10.1073/pnas.80.11.3517

Plasticity in the central nervous system: do synapses divide?

R K Carlin, P Siekevitz
PMCID: PMC394076  PMID: 6574496

Abstract

Changes in the proportion of synapses containing postsynaptic densities with perforations during periods of increased synapse formation have led us to propose a hypothesis describing a possible division of preexisting synapses. Relevant features of this model are that various types of stimulation result in the following sequence of events: (i) the synaptic junction increases in area; (ii) a perforation forms in the enlarging synaptic junction; (iii) a synaptic spinule appears apposed to the perforation in the postsynaptic density; (iv) the perforation in the synaptic junction increases in size until the synaptic junction splits into two separate synaptic junctions within the same synaptic terminal; and (v) the dendritic spine divides into two, each containing a synaptic junction. Physiological responses in which synapse division may possibly play a role include hormone-induced neuronal changes, reinnervation of dendrites after lesions, and learning and memory.

Full text

PDF
3517

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artyukhina N. I., Ryabinina M. A. Ultrastructural changes in synapses of the rabbit sensomotor cortex during stimulation of the reticular formation. Neurosci Behav Physiol. 1980 Sep-Oct;10(5):438–445. doi: 10.1007/BF01187007. [DOI] [PubMed] [Google Scholar]
  2. Carlin R. K., Grab D. J., Cohen R. S., Siekevitz P. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol. 1980 Sep;86(3):831–845. doi: 10.1083/jcb.86.3.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen R. S., Blomberg F., Berzins K., Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol. 1977 Jul;74(1):181–203. doi: 10.1083/jcb.74.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen R. S., Siekevitz P. Form of the postsynaptic density. A serial section study. J Cell Biol. 1978 Jul;78(1):36–46. doi: 10.1083/jcb.78.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eysel U. T. Functional reconnections without new axonal growth in a partially denervated visual relay nucleus. Nature. 1982 Sep 30;299(5882):442–444. doi: 10.1038/299442a0. [DOI] [PubMed] [Google Scholar]
  6. Field P. M., Coldham D. E., Raisman G. Synapse formation after injury in the adult rat brain: preferential reinnervation of denervated fimbrial sites by axons of the contralateral fimbria. Brain Res. 1980 May 5;189(1):103–113. doi: 10.1016/0006-8993(80)90010-4. [DOI] [PubMed] [Google Scholar]
  7. Fifková E., Delay R. J. Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J Cell Biol. 1982 Oct;95(1):345–350. doi: 10.1083/jcb.95.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GRAY E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat. 1959 Oct;93:420–433. [PMC free article] [PubMed] [Google Scholar]
  9. GRAY E. G., GUILLERY R. W. A NOTE ON THE DENDRITIC SPINE APPARATUS. J Anat. 1963 Jul;97:389–392. [PMC free article] [PubMed] [Google Scholar]
  10. GRAY E. G., GUILLERY R. W. A NOTE ON THE DENDRITIC SPINE APPARATUS. J Anat. 1963 Jul;97:389–392. [PMC free article] [PubMed] [Google Scholar]
  11. GRAY E. G. The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: light and electron microscope observations. J Anat. 1961 Jul;95:345–356. [PMC free article] [PubMed] [Google Scholar]
  12. Globus A., Rosenzweig M. R., Bennett E. L., Diamond M. C. Effects of differential experience on dendritic spine counts in rat cerebral cortex. J Comp Physiol Psychol. 1973 Feb;82(2):175–181. doi: 10.1037/h0033910. [DOI] [PubMed] [Google Scholar]
  13. Goldspink G. The proliferation of myofibrils during muscle fibre growth. J Cell Sci. 1970 Mar;6(2):593–603. doi: 10.1242/jcs.6.2.593. [DOI] [PubMed] [Google Scholar]
  14. Greenough W. T., West R. W., DeVoogd T. J. Subsynaptic plate perforations: changes with age and experience in the rat. Science. 1978 Dec 8;202(4372):1096–1098. doi: 10.1126/science.715459. [DOI] [PubMed] [Google Scholar]
  15. HAMLYN L. H. The fine structure of the mossy fibre endings in the hippocampus of the rabbit. J Anat. 1962 Jan;96:112–120. [PMC free article] [PubMed] [Google Scholar]
  16. Harreveld A. V., Trubatch J. Synaptic changes in frog brain after stimulation with potassium chloride. J Neurocytol. 1975 Feb;4(1):33–46. doi: 10.1007/BF01099093. [DOI] [PubMed] [Google Scholar]
  17. Hatton J. D., Ellisman M. H. A restructuring off hypothalamic synapses is associated with motherhood. J Neurosci. 1982 Jun;2(6):704–707. doi: 10.1523/JNEUROSCI.02-06-00704.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hirano A., Jones M. Fine structure of cycasin-induced cerebellar alterations. Fed Proc. 1972 Sep-Oct;31(5):1517–1519. [PubMed] [Google Scholar]
  19. Jones D. G., Devon R. M. An ultrastructural study into the effects of pentobarbitone on synaptic organization. Brain Res. 1978 May 19;147(1):47–63. doi: 10.1016/0006-8993(78)90771-0. [DOI] [PubMed] [Google Scholar]
  20. Kandel E. R., Schwartz J. H. Molecular biology of learning: modulation of transmitter release. Science. 1982 Oct 29;218(4571):433–443. doi: 10.1126/science.6289442. [DOI] [PubMed] [Google Scholar]
  21. Kelly P. T., Cotman C. W. Developmental changes in morphology and molecular composition of isolated synaptic junctional structures. Brain Res. 1981 Feb 16;206(2):251–257. doi: 10.1016/0006-8993(81)90531-x. [DOI] [PubMed] [Google Scholar]
  22. Kelly P. T., Cotman C. W. Synaptic proteins. Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J Cell Biol. 1978 Oct;79(1):173–183. doi: 10.1083/jcb.79.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lee K. S., Schottler F., Oliver M., Lynch G. Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus. J Neurophysiol. 1980 Aug;44(2):247–258. doi: 10.1152/jn.1980.44.2.247. [DOI] [PubMed] [Google Scholar]
  24. Matthews D. A., Cotman C., Lynch G. An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. II. Reappearance of morphologically normal synaptic contacts. Brain Res. 1976 Oct 8;115(1):23–41. doi: 10.1016/0006-8993(76)90820-9. [DOI] [PubMed] [Google Scholar]
  25. Matus A., Ackermann M., Pehling G., Byers H. R., Fujiwara K. High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7590–7594. doi: 10.1073/pnas.79.23.7590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Medosch C. M., Diamond M. C. Rat occipital cortical synapses after ovariectomy. Exp Neurol. 1982 Jan;75(1):120–133. doi: 10.1016/0014-4886(82)90012-7. [DOI] [PubMed] [Google Scholar]
  27. Mollgaard K., Diamond M. C., Bennett E. L., Rosenzweig M. R., Lindner B. Quantitative synaptic changes with differential experience in rat brain. Int J Neurosci. 1971 Sep;2(3):113–127. doi: 10.3109/00207457109148764. [DOI] [PubMed] [Google Scholar]
  28. Müller L., Pattiselanno A., Vrensen G. The postnatal development of the presynaptic grid in the visual cortex of rabbits and the effect of dark-rearing. Brain Res. 1981 Jan 26;205(1):39–48. doi: 10.1016/0006-8993(81)90718-6. [DOI] [PubMed] [Google Scholar]
  29. Nieto-Sampedro M., Hoff S. F., Cotman C. W. Perforated postsynaptic densities: probable intermediates in synapse turnover. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5718–5722. doi: 10.1073/pnas.79.18.5718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nitsch C., Rinne U. Large dense-core vesicle exocytosis and membrane recycling in the mossy fibre synapses of the rabbit hippocampus during epileptiform seizures. J Neurocytol. 1981 Apr;10(2):201–209. doi: 10.1007/BF01257967. [DOI] [PubMed] [Google Scholar]
  31. Peters A., Kaiserman-Abramof I. R. The small pyramidal neuron of the rat cerebral cortex. The synapses upon dendritic spines. Z Zellforsch Mikrosk Anat. 1969 Sep 22;100(4):487–506. doi: 10.1007/BF00344370. [DOI] [PubMed] [Google Scholar]
  32. Quimby K. L., Aschkenase L. J., Bowman R. E., Katz J., Chang L. W. Enduring learning deficits and cerebral synaptic malformation from exposure to 10 parts of halothane per million. Science. 1974 Aug 16;185(4151):625–627. doi: 10.1126/science.185.4151.625. [DOI] [PubMed] [Google Scholar]
  33. ROSENBLUTH J. Subsurface cisterns and their relationship to the neuronal plasma membrane. J Cell Biol. 1962 Jun;13:405–421. doi: 10.1083/jcb.13.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Raisman G., Field P. M. A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei. Brain Res. 1973 Feb 28;50(2):241–264. doi: 10.1016/0006-8993(73)90729-4. [DOI] [PubMed] [Google Scholar]
  35. Raisman G. Formation of synapses in the adult rat after injury: similarities and differences between a peripheral and a central nervous site. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):349–359. doi: 10.1098/rstb.1977.0047. [DOI] [PubMed] [Google Scholar]
  36. Raisman G. Neuronal plasticity in the septal nuclei of the adult rat. Brain Res. 1969 Jun;14(1):25–48. doi: 10.1016/0006-8993(69)90029-8. [DOI] [PubMed] [Google Scholar]
  37. Rutledge L. T. The effects of denervation and stimulation upon synaptic ultrastructure. J Comp Neurol. 1978 Mar 1;178(1):117–128. doi: 10.1002/cne.901780107. [DOI] [PubMed] [Google Scholar]
  38. Tarrant S. B., Routtenberg A. Postsynaptic membrane and spine apparatus: proximity in dendritic spines. Neurosci Lett. 1979 Mar;11(3):289–294. doi: 10.1016/0304-3940(79)90010-7. [DOI] [PubMed] [Google Scholar]
  39. Tarrant S. B., Routtenberg A. The synaptic spinule in the dendritic spine: electron microscopic study of the hippocampal dentate gyrus. Tissue Cell. 1977;9(3):461–473. doi: 10.1016/0040-8166(77)90006-4. [DOI] [PubMed] [Google Scholar]
  40. Tsukahara N. Synaptic plasticity in the mammalian central nervous system. Annu Rev Neurosci. 1981;4:351–379. doi: 10.1146/annurev.ne.04.030181.002031. [DOI] [PubMed] [Google Scholar]
  41. Valverde F. Rate and extent of recovery from dark rearing in the visual cortex of the mouse. Brain Res. 1971 Oct 8;33(1):1–11. doi: 10.1016/0006-8993(71)90302-7. [DOI] [PubMed] [Google Scholar]
  42. Van Harreveld A., Fifkova E. Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation. Exp Neurol. 1975 Dec;49(3):736–749. doi: 10.1016/0014-4886(75)90055-2. [DOI] [PubMed] [Google Scholar]
  43. Volkmar F. R., Greenough W. T. Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science. 1972 Jun 30;176(4042):1445–1447. doi: 10.1126/science.176.4042.1445. [DOI] [PubMed] [Google Scholar]
  44. Vrensen G., Cardozo J. N. Changes in size and shape of synaptic connections after visual training: an ultrastructural approach of synaptic plasticity. Brain Res. 1981 Aug 10;218(1-2):79–97. doi: 10.1016/0006-8993(81)90990-2. [DOI] [PubMed] [Google Scholar]
  45. WESTRUM L. E., BLACKSTAD T. W. An electron microscopic study of the stratum radiatum of the rat hippocampus (regio superior, CA 1) with particular emphasis on synaptology. J Comp Neurol. 1962 Dec;119:281–309. doi: 10.1002/cne.901190303. [DOI] [PubMed] [Google Scholar]
  46. West R. W., Greenough W. T. Effect of environmental complexity on cortical synapses of rats: preliminary results. Behav Biol. 1972 Apr;7(2):279–284. doi: 10.1016/s0091-6773(72)80207-4. [DOI] [PubMed] [Google Scholar]
  47. Westrum L. E., Jones D. H., Gray E. G., Barron J. Microtubules, dendritic spines and spine appratuses. Cell Tissue Res. 1980;208(2):171–181. doi: 10.1007/BF00234868. [DOI] [PubMed] [Google Scholar]
  48. Wilson C. J., Groves P. M., Kitai S. T., Linder J. C. Three-dimensional structure of dendritic spines in the rat neostriatum. J Neurosci. 1983 Feb;3(2):383–388. doi: 10.1523/JNEUROSCI.03-02-00383.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES