Abstract
The free energy and enthalpy of protein incorporation into membranes are calculated with special emphasis on the hitherto neglected effects of immobilization of protein and perturbation of lipid order in the membrane. The free energy change is found to be determined by the hydrophobic effect as the driving force for incorporation and the protein immobilization effect which leads to a considerable reduction of the free energy gained from the hydrophobic effect. For incorporation of a hydrophobic, bilayer-spanning alpha-helix, the free energy change obtained is of the order of -15 kcal/mol (1 cal = 4.184 J) in agreement with experimental results. The lipid perturbation effect yields only a small contribution to the free energy change due to an energy/entropy compensation inherent in lipid order. This effect dominates the enthalpy change, giving rise to values on the order of 100 kcal/mol with a pronounced temperature dependence around the lipid phase transition as observed experimentally. The kinetics of protein incorporation are even more strongly affected by the lipid perturbation effect, leading to an abrupt decrease of the rate of incorporation below the lipid phase transition.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen L. C. A model for the hydrogen bond. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4701–4705. doi: 10.1073/pnas.72.12.4701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Date T., Goodman J. M., Wickner W. T. Procoat, the precursor of M13 coat protein, requires an electrochemical potential for membrane insertion. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4669–4673. doi: 10.1073/pnas.77.8.4669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelman D. M., Steitz T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell. 1981 Feb;23(2):411–422. doi: 10.1016/0092-8674(81)90136-7. [DOI] [PubMed] [Google Scholar]
- Epand R. M., Epand R. The role of the phospholipid phase transition in the regulation of glucagon binding to lecithin. Biochim Biophys Acta. 1980 Nov 18;602(3):600–609. doi: 10.1016/0005-2736(80)90338-7. [DOI] [PubMed] [Google Scholar]
- Epand R. M., Sturtevant J. M. A calorimetric study of peptide-phospholipid interactions: the glucagon-dimyristoylphosphatidylcholine complex. Biochemistry. 1981 Aug 4;20(16):4603–4606. doi: 10.1021/bi00519a014. [DOI] [PubMed] [Google Scholar]
- Hermans J., Jr Experimental free energy and enthalpy of formation of the alpha-helix. J Phys Chem. 1966 Feb;70(2):510–515. doi: 10.1021/j100874a031. [DOI] [PubMed] [Google Scholar]
- Janin J., Chothia C. Role of hydrophobicity in the binding of coenzymes. Appendix. Translational and rotational contribution to the free energy of dissociation. Biochemistry. 1978 Jul 25;17(15):2943–2948. doi: 10.1021/bi00608a001. [DOI] [PubMed] [Google Scholar]
- Jähnig F., Bramhall J. The origin of the break in Arrhenius plots of membrane processes. Biochim Biophys Acta. 1982 Sep 9;690(2):310–313. doi: 10.1016/0005-2736(82)90337-6. [DOI] [PubMed] [Google Scholar]
- Jähnig F. Critical effects from lipid-protein interaction in membranes. I. Theoretical description. Biophys J. 1981 Nov;36(2):329–345. doi: 10.1016/S0006-3495(81)84735-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jähnig F., Vogel H., Best L. Unifying description of the effect of membrane proteins on lipid order. Verification for the melittin/dimyristoylphosphatidylcholine system. Biochemistry. 1982 Dec 21;21(26):6790–6798. doi: 10.1021/bi00269a027. [DOI] [PubMed] [Google Scholar]
- Leto T. L., Holloway P. W. Mechanism of cytochrome b5 binding to phosphatidylcholine vesicles. J Biol Chem. 1979 Jun 25;254(12):5015–5019. [PubMed] [Google Scholar]
- Mabrey S., Sturtevant J. M. Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3862–3866. doi: 10.1073/pnas.73.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massey J. B., Gotto A. M., Jr, Pownall H. J. Thermodynamics of lipid-protein interactions: Interaction of apolipoprotein A-II from human plasma high-density lipoproteins with dimyristoylphosphatidylcholine. Biochemistry. 1981 Mar 17;20(6):1575–1584. doi: 10.1021/bi00509a026. [DOI] [PubMed] [Google Scholar]
- Nozaki Y., Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem. 1971 Apr 10;246(7):2211–2217. [PubMed] [Google Scholar]
- Owicki J. C., McConnell H. M. Theory of protein-lipid and protein-protein interactions in bilayer membranes. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4750–4754. doi: 10.1073/pnas.76.10.4750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owicki J. C., Springgate M. W., McConnell H. M. Theoretical study of protein--lipid interactions in bilayer membranes. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1616–1619. doi: 10.1073/pnas.75.4.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page M. I., Jencks W. P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1678–1683. doi: 10.1073/pnas.68.8.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pownall H., Pao Q., Hickson D., Sparrow J. T., Kusserow S. K., Massey J. B. Kinetics and mechanism of association of human plasma apolipoproteins with dimyristoylphosphatidylcholine: effect of protein structure and lipid clusters on reaction rates. Biochemistry. 1981 Nov 10;20(23):6630–6635. doi: 10.1021/bi00526a017. [DOI] [PubMed] [Google Scholar]
- Reynolds J. A., Gilbert D. B., Tanford C. Empirical correlation between hydrophobic free energy and aqueous cavity surface area. Proc Natl Acad Sci U S A. 1974 Aug;71(8):2925–2927. doi: 10.1073/pnas.71.8.2925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
- Rosseneu M., Soetewey F., Middelhoff G., Peeters H., Brown W. V. Studies of the lipid binding characteristics of the apolipoproteins from human high density lipoprotein. II. Calorimetry of the binding of apo AI and apo AII with phospholipids. Biochim Biophys Acta. 1976 Jul 20;441(1):68–80. doi: 10.1016/0005-2760(76)90282-4. [DOI] [PubMed] [Google Scholar]
- Segrest J. P., Feldmann R. J. Membrane proteins: amino acid sequence and membrane penetration. J Mol Biol. 1974 Aug 25;87(4):853–858. doi: 10.1016/0022-2836(74)90090-4. [DOI] [PubMed] [Google Scholar]
- Silvius J. R., McElhaney R. N. Membrane lipid physical state and modulation of the Na+,Mg2+-ATPase activity in Acholeplasma laidlawii B. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1255–1259. doi: 10.1073/pnas.77.3.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaz W. L., Vogel H., Jähnig F., Austin R. H., Schoellmann G. Kinetics of the incorporation of cytochrome b5, an integral membrane protein, into unilamellar dimyristoyllecithin liposomes. FEBS Lett. 1978 Mar 15;87(2):269–272. doi: 10.1016/0014-5793(78)80349-4. [DOI] [PubMed] [Google Scholar]
- Vogel H. Incorporation of melittin into phosphatidylcholine bilayers. Study of binding and conformational changes. FEBS Lett. 1981 Nov 2;134(1):37–42. doi: 10.1016/0014-5793(81)80545-5. [DOI] [PubMed] [Google Scholar]
- Weinstein J. N., Blumenthal R., van Renswoude J., Kempf C., Klausner R. D. Charge clusters and the orientation of membrane proteins. J Membr Biol. 1982;66(3):203–212. doi: 10.1007/BF01868495. [DOI] [PubMed] [Google Scholar]
- Weinstein J. N., Klausner R. D., Innerarity T., Ralston E., Blumenthal R. Phase transition release, a new approach to the interaction of proteins with lipid vesicles. Application to lipoproteins. Biochim Biophys Acta. 1981 Oct 2;647(2):270–284. doi: 10.1016/0005-2736(81)90255-8. [DOI] [PubMed] [Google Scholar]
- Weinstein S., Wallace B. A., Blout E. R., Morrow J. S., Veatch W. Conformation of gramicidin A channel in phospholipid vesicles: a 13C and 19F nuclear magnetic resonance study. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4230–4234. doi: 10.1073/pnas.76.9.4230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfenden R. V., Cullis P. M., Southgate C. C. Water, protein folding, and the genetic code. Science. 1979 Nov 2;206(4418):575–577. doi: 10.1126/science.493962. [DOI] [PubMed] [Google Scholar]
- Wright J. K., Riede I., Overath P. Lactose carrier protein of Escherichia coli: interaction with galactosides and protons. Biochemistry. 1981 Oct 27;20(22):6404–6415. doi: 10.1021/bi00525a019. [DOI] [PubMed] [Google Scholar]
- von Heijne G., Blomberg C. Trans-membrane translocation of proteins. The direct transfer model. Eur J Biochem. 1979 Jun;97(1):175–181. doi: 10.1111/j.1432-1033.1979.tb13100.x. [DOI] [PubMed] [Google Scholar]