Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jun;80(12):3726–3728. doi: 10.1073/pnas.80.12.3726

Depolarization and increased conductance precede superoxide release by concanavalin A-stimulated rat alveolar macrophages.

A R Cameron, J Nelson, H J Forman
PMCID: PMC394123  PMID: 6304734

Abstract

Rat alveolar macrophages release superoxide into the extracellular medium when stimulated by concanavalin A. This process, the respiratory burst, is characterized by a delay between binding of the stimulus and release of superoxide. It has been proposed that a key event that occurs during this delay period is the alteration of membrane electrical potential. Microelectrode impalement was used to directly measure electrical properties of the plasma membrane. Upon addition of concanavalin A, the membrane potential depolarized 21%, and membrane electrical resistance decreased 16%. Parallel chemical measurement of superoxide release indicated that these changes in electrical properties precede the release of superoxide.

Full text

PDF
3726

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
  2. Castranova V., Bowman L., Miles P. R. Transmembrane potential and ionic content of rat alveolar macrophages. J Cell Physiol. 1979 Dec;101(3):471–479. doi: 10.1002/jcp.1041010313. [DOI] [PubMed] [Google Scholar]
  3. Cohen H. J., Chovaniec M. E. Superoxide generation by digitonin-stimulated guinea pig granulocytes. A basis for a continuous assay for monitoring superoxide production and for the study of the activation of the generating system. J Clin Invest. 1978 Apr;61(4):1081–1087. doi: 10.1172/JCI109007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen H. J., Chovaniec M. E. Superoxide production by digitonin-stimulated guinea pig granulocytes. The effects of N-ethyl maleimide, divalent cations; and glycolytic and mitochondrial inhibitors on the activation of the superoxide generating system. J Clin Invest. 1978 Apr;61(4):1088–1096. doi: 10.1172/JCI109008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dos Reis G. A., Oliveira-Castro G. M. Electrophysiology of phagocytic membranes. I. Potassium-dependent slow membrane hyperpolarizations in mice macrophages. Biochim Biophys Acta. 1977 Sep 19;469(3):257–263. doi: 10.1016/0005-2736(77)90161-4. [DOI] [PubMed] [Google Scholar]
  6. Forman H. J., Nelson J., Fisher A. B. Rat alveolar macrophages require NADPH for superoxide production in the respiratory burst. Effect of NADPH depletion by paraquat. J Biol Chem. 1980 Oct 25;255(20):9879–9883. [PubMed] [Google Scholar]
  7. Gallin E. K., Gallin J. I. Interaction of chemotactic factors with human macrophages. Induction of transmembrane potential changes. J Cell Biol. 1977 Oct;75(1):277–289. doi: 10.1083/jcb.75.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoek J. B., Nicholls D. G., Williamson J. R. Determination of the mitochondrial protonmotive force in isolated hepatocytes. J Biol Chem. 1980 Feb 25;255(4):1458–1464. [PubMed] [Google Scholar]
  9. Jones G. S., VanDyke K., Castranova V. Transmembrane potential changes associated with superoxide release from human granulocytes. J Cell Physiol. 1981 Jan;106(1):75–83. doi: 10.1002/jcp.1041060109. [DOI] [PubMed] [Google Scholar]
  10. Korchak H. M., Weissmann G. Changes in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3818–3822. doi: 10.1073/pnas.75.8.3818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Korchak H. M., Weissmann G. Stimulus-response coupling in the human neutrophil. Transmembrane potential and the role of extracellular Na+. Biochim Biophys Acta. 1980 Sep 2;601(1):180–194. doi: 10.1016/0005-2736(80)90523-4. [DOI] [PubMed] [Google Scholar]
  12. Lew P. D., Stossel T. P. Effect of calcium on superoxide production by phagocytic vesicles from rabbit alveolar macrophages. J Clin Invest. 1981 Jan;67(1):1–9. doi: 10.1172/JCI110000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MYRVIK Q., LEAKE E. S., FARISS B. Studies on pulmonary alveolar macrophages from the normal rabbit: a technique to procure them in a high state of purity. J Immunol. 1961 Feb;86:128–132. [PubMed] [Google Scholar]
  14. Miles P. R., Bowman L., Castranova V. Transmembrane potential changes during phagocytosis in rat alveolar macrophages. J Cell Physiol. 1981 Jan;106(1):109–117. doi: 10.1002/jcp.1041060112. [DOI] [PubMed] [Google Scholar]
  15. Seligmann B. E., Gallin E. K., Martin D. L., Shain W., Gallin J. I. Interaction of chemotactic factors with human polymorphonuclear leukocytes: studies using a membrane potential-sensitive cyanine dye. J Membr Biol. 1980;52(3):257–272. doi: 10.1007/BF01869194. [DOI] [PubMed] [Google Scholar]
  16. Seligmann B. E., Gallin J. I. Use of lipophilic probes of membrane potential to assess human neutrophil activation. Abnormality in chronic granulomatous disease. J Clin Invest. 1980 Sep;66(3):493–503. doi: 10.1172/JCI109880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Seligmann B., Gallin J. I. Secretagogue modulation of the response of human neutrophils to chemoattractants: studies with a membrane potential sensitive cyanine dye. Mol Immunol. 1980 Feb;17(2):191–200. doi: 10.1016/0161-5890(80)90071-1. [DOI] [PubMed] [Google Scholar]
  18. Simchowitz L., Spilberg I. Chemotactic factor-induced generation of superoxide radicals by human neutrophils: evidence for the role of sodium. J Immunol. 1979 Nov;123(5):2428–2435. [PubMed] [Google Scholar]
  19. Simchowitz L., Spilberg I. Generation of superoxide radicals by human peripheral neutrophils activated by chemotactic factor. Evidence for the role of calcium. J Lab Clin Med. 1979 Apr;93(4):583–593. [PubMed] [Google Scholar]
  20. Sweeney T. D., Castranova V., Bowman L., Miles P. R. Factors which affect superoxide anion release from rat alveolar macrophages. Exp Lung Res. 1981 May;2(2):85–96. doi: 10.3109/01902148109052305. [DOI] [PubMed] [Google Scholar]
  21. Whitin J. C., Chapman C. E., Simons E. R., Chovaniec M. E., Cohen H. J. Correlation between membrane potential changes and superoxide production in human granulocytes stimulated by phorbol myristate acetate. Evidence for defective activation in chronic granulomatous disease. J Biol Chem. 1980 Mar 10;255(5):1874–1878. [PubMed] [Google Scholar]
  22. Whitin J. C., Clark R. A., Simons E. R., Cohen H. J. Effects of the myeloperoxidase system on fluorescent probes of granulocyte membrane potential. J Biol Chem. 1981 Sep 10;256(17):8904–8906. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES