Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jul;80(13):3884–3888. doi: 10.1073/pnas.80.13.3884

Iron superoxide dismutase from Escherichia coli at 3.1-A resolution: a structure unlike that of copper/zinc protein at both monomer and dimer levels.

W C Stallings, T B Powers, K A Pattridge, J A Fee, M L Ludwig
PMCID: PMC394163  PMID: 6346322

Abstract

The structure of iron superoxide dismutase (EC 1.15.1.1) from Escherichia coli has been determined at 3.1-A resolution. The dimeric molecule is constructed from identical subunits, which are two-domain polypeptides. The NH2-terminal domain is composed of two antiparallel crossing helices and the COOH-terminal domain is a three-layered structure characterized by mixed alpha/beta secondary structural features. The active center iron atoms, separated by 18 A and located near the monomer-monomer interface, are coordinated by two amino acid residues from each domain. Azide binding has been investigated by using difference Fourier techniques. Consistent with the notion of the independent evolution of the copper/zinc dismutase gene, the iron dismutase structure resembles the copper/zinc protein at neither the monomer nor the dimer level.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Autor A. P. Biosynthesis of mitochondrial manganese superoxide dismutase in saccharomyces cerevisiae. Precursor form of mitochondrial superoxide dismutase made in the cytoplasm. J Biol Chem. 1982 Mar 10;257(5):2713–2718. [PubMed] [Google Scholar]
  2. Banyard S. H., Stammers D. K., Harrison P. M. Electron density map of apoferritin at 2.8-A resolution. Nature. 1978 Jan 19;271(5642):282–284. doi: 10.1038/271282a0. [DOI] [PubMed] [Google Scholar]
  3. Beem K. M., Richardson J. S., Richardson D. C. Manganese superoxide dismutases from Escherichia coli and from yeast mitochondria: preliminary x-ray crystallographic studies. J Mol Biol. 1976 Aug 5;105(2):327–332. doi: 10.1016/0022-2836(76)90115-7. [DOI] [PubMed] [Google Scholar]
  4. Bridgen J., Harris J. I., Kolb E. Superoxide dismutase from Bacillus stearothermophilus: crystallization and preliminary x-ray diffraction studies. J Mol Biol. 1976 Aug 5;105(2):333–335. doi: 10.1016/0022-2836(76)90116-9. [DOI] [PubMed] [Google Scholar]
  5. Fee J. A., McClune G. J., O'Neill P., Fielden E. M. Saturation behavior of superoxide dismutation catalyzed by the iron containing superoxide dismutase of E. coli B. Biochem Biophys Res Commun. 1981 May 15;100(1):377–384. doi: 10.1016/s0006-291x(81)80107-6. [DOI] [PubMed] [Google Scholar]
  6. Fee J. A., Shapiro E. R., Moss T. H. Direct evidence for manganese (III) binding to the manganosuperoxide dismutase of Escherichia coli B. J Biol Chem. 1976 Oct 10;251(19):6157–6159. [PubMed] [Google Scholar]
  7. Fielden E. M., Roberts P. B., Bray R. C., Lowe D. J., Mautner G. N., Rotilio G., Calabrese L. Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Biochem J. 1974 Apr;139(1):49–60. doi: 10.1042/bj1390049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gregory E. M., Dapper C. H. Isolation of iron-containing superoxide dismutase from Bacteroides fragilis: reconstitution as a Mn-containing enzyme. Arch Biochem Biophys. 1983 Jan;220(1):293–300. doi: 10.1016/0003-9861(83)90413-7. [DOI] [PubMed] [Google Scholar]
  9. Hendrickson W. A., Klippenstein G. L., Ward K. B. Tertiary structure of myohemerythrin at low resolution. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2160–2164. doi: 10.1073/pnas.72.6.2160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hewitt J., Morris J. G. Superoxide dismutase in some obligately anaerobic bacteria. FEBS Lett. 1975 Feb 15;50(3):315–318. doi: 10.1016/0014-5793(75)80518-7. [DOI] [PubMed] [Google Scholar]
  11. Kirby T. W., Lancaster J. R., Jr, Fridovich I. Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch Biochem Biophys. 1981 Aug;210(1):140–148. doi: 10.1016/0003-9861(81)90174-0. [DOI] [PubMed] [Google Scholar]
  12. Lindmark D. G., Müller M. Superoxide dismutase in the anaerobic flagellates, Tritrichomonas foetus and Monocercomonas sp. J Biol Chem. 1974 Jul 25;249(14):4634–4637. [PubMed] [Google Scholar]
  13. McAdam M. E., Fox R. A., Lavelle F., Fielden E. M. A pulse-radiolysis study of the manganese-containing superoxide dismutase from Bacillus stearothermophilus. A kinetic model for the enzyme action. Biochem J. 1977 Jul 1;165(1):71–79. doi: 10.1042/bj1650071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meier B., Barra D., Bossa F., Calabrese L., Rotilio G. Synthesis of either Fe- or Mn-superoxide dismutase with an apparently identical protein moiety by an anaerobic bacterium dependent on the metal supplied. J Biol Chem. 1982 Dec 10;257(23):13977–13980. [PubMed] [Google Scholar]
  15. Ose D. E., Fridovich I. Superoxide dismutase. Reversible removal of manganese and its substitution by cobalt, nickel or zinc. J Biol Chem. 1976 Feb 25;251(4):1217–1218. [PubMed] [Google Scholar]
  16. Peeters-Joris C., Vandevoorde A. M., Baudhuin P. Subcellular localization of superoxide dismutase in rat liver. Biochem J. 1975 Jul;150(1):31–39. doi: 10.1042/bj1500031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Powers T. B., Slykhouse T. O., Fee J. A., Ludwig M. L. Characterization of an orthorhombic crystal form of iron-containing superoxide dismutase from Escherichia coli B. J Mol Biol. 1978 Aug 25;123(4):689–690. doi: 10.1016/0022-2836(78)90212-7. [DOI] [PubMed] [Google Scholar]
  18. Rao S. T., Rossmann M. G. Comparison of super-secondary structures in proteins. J Mol Biol. 1973 May 15;76(2):241–256. doi: 10.1016/0022-2836(73)90388-4. [DOI] [PubMed] [Google Scholar]
  19. Richardson J., Thomas K. A., Rubin B. H., Richardson D. C. Crystal structure of bovine Cu,Zn superoxide dismutase at 3 A resolution: chain tracing and metal ligands. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1349–1353. doi: 10.1073/pnas.72.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ringe D., Petsko G. A., Yamakura F., Suzuki K., Ohmori D. Structure of iron superoxide dismutase from Pseudomonas ovalis at 2.9-A resolution. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3879–3883. doi: 10.1073/pnas.80.13.3879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Salin M. L., Bridges S. M. Isolation and characterization of an iron-containing superoxide dismutase from a eucaryote, Brassica campestris. Arch Biochem Biophys. 1980 May;201(2):369–374. doi: 10.1016/0003-9861(80)90524-x. [DOI] [PubMed] [Google Scholar]
  22. Sato S., Nakazawa K. Purification and properties of superoxide dismutase from Thermus thermophilus HB8. J Biochem. 1978 Apr;83(4):1165–1171. doi: 10.1093/oxfordjournals.jbchem.a132007. [DOI] [PubMed] [Google Scholar]
  23. Slykhouse T. O., Fee J. A. Physical and chemical studies on bacterial superoxide dismutases. Purification and some anion binding properties of the iron-containing protein of Escherichia coli B. J Biol Chem. 1976 Sep 25;251(18):5472–5477. [PubMed] [Google Scholar]
  24. Smit J. D., Pulver-Sladek J., Jansonius J. N. Preliminary X-ray diffraction studies of orthorhombic crystals of superoxide dismutase from Bacillus stearothermophilus. J Mol Biol. 1977 May 25;112(3):491–494. doi: 10.1016/s0022-2836(77)80194-0. [DOI] [PubMed] [Google Scholar]
  25. Stallings W. C., Pattridge K. A., Powers T. B., Fee J. A., Ludwig M. L. Characterization of crystals of tetrameric manganese superoxide dismutase from Thermus thermophilus HB8. J Biol Chem. 1981 Jun 10;256(11):5857–5859. [PubMed] [Google Scholar]
  26. Steinman H. M., Hill R. L. Sequence homologies among bacterial and mitochondrial superoxide dismutases. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3725–3729. doi: 10.1073/pnas.70.12.3725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tainer J. A., Getzoff E. D., Beem K. M., Richardson J. S., Richardson D. C. Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. J Mol Biol. 1982 Sep 15;160(2):181–217. doi: 10.1016/0022-2836(82)90174-7. [DOI] [PubMed] [Google Scholar]
  28. Villafranca J. J. EPR spectra of Fe(III)-superoxide dismutase with special reference to the electron spin relaxation time of Fe(III). FEBS Lett. 1976 Feb 15;62(2):230–230. doi: 10.1016/0014-5793(76)80059-2. [DOI] [PubMed] [Google Scholar]
  29. Ward K. B., Hendrickson W. A., Klippenstein G. L. Quaternary and tertiary structure of haemerythrin. Nature. 1975 Oct 30;257(5529):818–821. doi: 10.1038/257818a0. [DOI] [PubMed] [Google Scholar]
  30. Watenpaugh K. D., Sieker L. C., Jensen L. H. The structure of rubredoxin at 1.2 A resolution. J Mol Biol. 1979 Jul 5;131(3):509–522. doi: 10.1016/0022-2836(79)90005-6. [DOI] [PubMed] [Google Scholar]
  31. Yamakura F. Purification, crystallization and properties of iron-containing superoxide dismutase from Pseudomonas ovalis. Biochim Biophys Acta. 1976 Feb 13;422(2):280–294. doi: 10.1016/0005-2744(76)90139-x. [DOI] [PubMed] [Google Scholar]
  32. Yamakura F., Suzuki K. Cadmium, chromium, and manganese replacement for iron in iron-superoxide dismutase from Pseudomonas ovalis. J Biochem. 1980 Jul;88(1):191–196. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES