Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jul;80(13):3971–3975. doi: 10.1073/pnas.80.13.3971

Photosynthetic electron transport from water to NADP+ driven by photosystem II in inside-out chloroplast vesicles

Per-Åke Albertsson 1,*, Ban-Dar Hsu 1, George M-S Tang 1, Daniel I Arnon 1
PMCID: PMC394181  PMID: 16593332

Abstract

It is now widely held that the light-induced noncyclic (linear) electron transport from water to NADP+ requires the collaboration in series of the two photosystems that operate in oxygen-evolving cells: photosystem II (PSII) photooxidizes water and transfers electrons to photosystem I (PSI); PSI photoreduces ferredoxin, which in turn reduces NADP+ (the Z scheme). However, a recently described alternative scheme envisions that PSII drives the noncyclic electron transport from water to ferredoxin and NADP+ without the collaboration of PSI, whose role is limited to cyclic electron transport [Arnon, D. I., Tsujimoto, H. Y. & Tang, G. M.-S. (1981) Proc. Natl. Acad. Sci. USA 78, 2942-2946]. Reported here are findings at variance with the Z scheme and consistent with the alternative scheme. Thylakoid membrane vesicles were isolated from spinach chloroplasts by the two-phase aqueous polymer partition method. Vesicles, originating mainly from appressed chloroplast membranes that are greatly enriched in PSII, were turned inside-out with respect to the original sidedness of the membrane. With added plastocyanin, ferredoxin, and ferredoxin-NADP+ reductase, the inside-out vesicles enriched in PSII gave a significant photoreduction of NADP+ with water as electron donor, under experimental conditions that appear to exclude the participation of PSI.

Keywords: phase partition, oxygenic photosystem, Z scheme

Full text

PDF
3971

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARNON D. I., ALLEN M. B., WHATLEY F. R. Photosynthesis by isolated chloroplasts. Nature. 1954 Aug 28;174(4426):394–396. doi: 10.1038/174394a0. [DOI] [PubMed] [Google Scholar]
  2. ARNON D. I., TSUJIMOTO H. Y., MCSWAIN B. D. ROLE OF FERREDOXIN IN PHOTOSYNTHETIC PRODUCTION OF OXYGEN AND PHOSPHORYLATION BY CHLOROPLASTS. Proc Natl Acad Sci U S A. 1964 Jun;51:1274–1282. doi: 10.1073/pnas.51.6.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akerlund H. E., Andersson B., Albertsson P. A. Isolation of photosystem II enriched membrane vesicles from spinach chloroplasts by phase partition. Biochim Biophys Acta. 1976 Dec 6;449(3):525–535. doi: 10.1016/0005-2728(76)90161-4. [DOI] [PubMed] [Google Scholar]
  4. Albertsson P. A., Andersson B., Larsson C., Akerlund H. E. Phase partition--a method for purification and analysis of cell organelles and membrane vesicles. Methods Biochem Anal. 1982;28:115–150. doi: 10.1002/9780470110485.ch2. [DOI] [PubMed] [Google Scholar]
  5. Anderson J. M., Melis A. Localization of different photosystems in separate regions of chloroplast membranes. Proc Natl Acad Sci U S A. 1983 Feb;80(3):745–749. doi: 10.1073/pnas.80.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Andersson B., Akerlund H. E., Albertsson P. A. Light-induced reversible proton extrusion by spinach-chloroplast photosystem II vesicles isolated by phase partition. FEBS Lett. 1977 May 15;77(2):141–145. doi: 10.1016/0014-5793(77)80221-4. [DOI] [PubMed] [Google Scholar]
  7. Andersson B., Akerlund H. E. Inside-out membrane vesicles isolated from spinach thylakoids. Biochim Biophys Acta. 1978 Sep 7;503(3):462–472. doi: 10.1016/0005-2728(78)90145-7. [DOI] [PubMed] [Google Scholar]
  8. Andersson B., Anderson J. M. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta. 1980 Dec 3;593(2):427–440. doi: 10.1016/0005-2728(80)90078-x. [DOI] [PubMed] [Google Scholar]
  9. Andersson B., Sundby C., Albertsson P. A. A mechanism for the formation of inside-out membrane vesicles. Preparation of inside-out vesicles from membrane-paired randomized chloroplast lamellae. Biochim Biophys Acta. 1980 Jul;599(2):391–402. doi: 10.1016/0005-2736(80)90186-8. [DOI] [PubMed] [Google Scholar]
  10. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Arnon D. I., Chain R. K. Regulation of ferredoxin-catalyzed photosynthetic phosphorylations. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4961–4965. doi: 10.1073/pnas.72.12.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Arnon D. I., Tsujimoto H. Y., Tang G. M. Different roles of plastoquinone in the photoreduction of ferredoxin and of membrane-bound iron-sulfur centers of chloroplasts. Biochem Biophys Res Commun. 1982 May 31;106(2):450–457. doi: 10.1016/0006-291x(82)91131-7. [DOI] [PubMed] [Google Scholar]
  13. Arnon D. I., Tsujimoto H. Y., Tang G. M. Proton transport in photooxidation of water: A new perspective on photosynthesis. Proc Natl Acad Sci U S A. 1981 May;78(5):2942–2946. doi: 10.1073/pnas.78.5.2942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Arnon D. I., Whatley F. R., Allen M. B. Assimilatory Power in Photosynthesis: Photosynthetic phosphorylation by isolated chloroplasts is coupled with TPN reduction. Science. 1958 May 2;127(3305):1026–1034. doi: 10.1126/science.127.3305.1026. [DOI] [PubMed] [Google Scholar]
  15. Arntzen C. J., Dilley R. A., Peters G. A., Shaw E. R. Photochemical activity and structural studies of photosystems derived from chloroplast grana and stroma lamellae. Biochim Biophys Acta. 1972 Jan 21;256(1):85–107. doi: 10.1016/0005-2728(72)90165-x. [DOI] [PubMed] [Google Scholar]
  16. Bendall D. S., Sofrová D. Reactions at 77 degrees K in photosystem 2 of green plants. Biochim Biophys Acta. 1971 Jun 15;234(3):371–380. doi: 10.1016/0005-2728(71)90204-0. [DOI] [PubMed] [Google Scholar]
  17. Boardman N. K., Anderson J. M., Hiller R. G. Photooxidation of cytochromes in leaves and chloroplasts at liquid-nitrogen temperature. Biochim Biophys Acta. 1971 Apr 6;234(1):126–136. doi: 10.1016/0005-2728(71)90137-x. [DOI] [PubMed] [Google Scholar]
  18. Boardman N. K. Photochemical properties of a photosystem II subchloroplast fragment. Biochim Biophys Acta. 1972 Dec 14;283(3):469–482. doi: 10.1016/0005-2728(72)90263-0. [DOI] [PubMed] [Google Scholar]
  19. Buchanan B. B., Arnon D. I. Ferredoxins: chemistry and function in photosynthesis, nitrogen fixation, and fermentative metabolism. Adv Enzymol Relat Areas Mol Biol. 1970;33:119–176. doi: 10.1002/9780470122785.ch3. [DOI] [PubMed] [Google Scholar]
  20. Cox R. P., Andersson B. Lateral and transverse organisation of cytochromes in the chloroplast thylakoid membrane. Biochem Biophys Res Commun. 1981 Dec 31;103(4):1336–1342. doi: 10.1016/0006-291x(81)90269-2. [DOI] [PubMed] [Google Scholar]
  21. Erixon K., Butler W. L. The relationship between Q, C- 550 and cytochrome b 559 in photoreactions at -196 degrees in chloroplasts. Biochim Biophys Acta. 1971 Jun 15;234(3):381–389. doi: 10.1016/0005-2728(71)90205-2. [DOI] [PubMed] [Google Scholar]
  22. Ke B., Sahu S., Elwood S., Beinert H. Further characterization of a photosystem-II particle isolated from spinach chloroplasts by triton treatment: the reaction-center components. Biochim Biophys Acta. 1974 Apr 23;347(1):36–48. doi: 10.1016/0005-2728(74)90198-4. [DOI] [PubMed] [Google Scholar]
  23. Ke B., Shaw E. R. Reconstitution of photosystems I and II using spinach subchloroplast fragments fractionated by triton treatment. Biochim Biophys Acta. 1972 Aug 17;275(2):192–198. doi: 10.1016/0005-2728(72)90040-0. [DOI] [PubMed] [Google Scholar]
  24. Ke B., Vernon L. P., Chaney T. H. Photoreduction of cytochrome b 559 in a photosystem-II subchloroplast particle. Biochim Biophys Acta. 1972 Feb 28;256(2):345–357. doi: 10.1016/0005-2728(72)90065-5. [DOI] [PubMed] [Google Scholar]
  25. Knaff D. B., Arnon D. I. LIGHT-INDUCED OXIDATION OF A CHLOROPLAST B-TYPE CYTOCHROME AT -189 degrees C. Proc Natl Acad Sci U S A. 1969 Jul;63(3):956–962. doi: 10.1073/pnas.63.3.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lam E., Malkin R. Reconstruction of the chloroplast noncyclic electron transport pathway from water to NADP with three integral protein complexes. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5494–5498. doi: 10.1073/pnas.79.18.5494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
  28. McSwain B. D., Arnon D. I. Enhancement effects and the identity of the two photochemical reactions of photosynthesis. Proc Natl Acad Sci U S A. 1968 Nov;61(3):989–996. doi: 10.1073/pnas.61.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mitchell P. Keilin's respiratory chain concept and its chemiosmotic consequences. Science. 1979 Dec 7;206(4423):1148–1159. doi: 10.1126/science.388618. [DOI] [PubMed] [Google Scholar]
  30. SHIN M., ARNON D. I. ENZYMIC MECHANISMS OF PYRIDINE NUCLEOTIDE REDUCTION IN CHLOROPLASTS. J Biol Chem. 1965 Mar;240:1405–1411. [PubMed] [Google Scholar]
  31. TAGAWA K., ARNON D. I. Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature. 1962 Aug 11;195:537–543. doi: 10.1038/195537a0. [DOI] [PubMed] [Google Scholar]
  32. TAGAWA K., TSUJIMOTO H. Y., ARNON D. I. SEPARATION BY MONOCHROMATIC LIGHT OF PHOTOSYNTHETIC PHOSPHORYLATION FROM OXYGEN EVOLUTION. Proc Natl Acad Sci U S A. 1963 Sep;50:544–549. doi: 10.1073/pnas.50.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wessels J. S., van Alphen-Van Waveren, Voorn G. Isolation and properties of particles containing the reaction center complex of photosystem II from spinach chloroplasts. Biochim Biophys Acta. 1973 Apr 5;292(3):741–752. doi: 10.1016/0005-2728(73)90021-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES