Abstract
Pt K2 rat kangaroo epithelial cells and Rat-1 fibroblasts were grown on conductive glass discs, fixed, and permeabilized, and the cytoskeletal elements actin, keratin, and vimentin were visualized by indirect immunofluorescence. After the fluorescence microscopy, the cells were postfixed and dehydrated for photoelectron microscopy. The contrast in these photoelectron micrographs is primarily topographical in origin, and the presence of fluorescent dyes at low density does not contribute significantly to the material contrast. By comparison with fluorescence micrographs obtained on the same individual cells, actin-containing stress fibers, keratin filaments, and vimentin filaments were identified in the photoelectron micrographs. The apparent volume occupied by the cytoskeletal network in the cells as judged from the photoelectron micrographs is much less than it appears to be from the fluorescence micrographs because the higher resolution of photoelectron microscopy shows the fibers closer to their true dimensions. Photoelectron microscopy is a surface technique, and the images highlight the exposed cytoskeletal structures and suppress those extending along the substrate below the nuclei. The results reported here show marked improvement in image quality of photoelectron micrographs and that this technique has the potential of contributing to higher resolution studies of cytoskeletal structures.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnes R. B., Amend J., Sistrom W. R., Griffith O. H. Quantum yield and image contrast of bacteriochlorophyll monolayers in photoelectron microscopy. Biophys J. 1978 Mar;21(3):195–202. doi: 10.1016/S0006-3495(78)85519-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birrell G. B., Burke C., Dehlinger P., Griffith O. H. Contrast in the photoelectric effect of organic and biochemical surfaces. A first step towards selective labeling in photoelectron microscopy. Biophys J. 1973 May;13(5):462–469. doi: 10.1016/S0006-3495(73)85999-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burridge K. Changes in cellular glycoproteins after transformation: identification of specific glycoproteins and antigens in sodium dodecyl sulfate gels. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4457–4461. doi: 10.1073/pnas.73.12.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng Y. S., Chen L. B. Detection of phosphotyrosine-containing 34,000-dalton protein in the framework of cells transformed with Rous sarcoma virus. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2388–2392. doi: 10.1073/pnas.78.4.2388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dam R. J., Kongslie K. F., Griffith O. H. Photoelectron quantum yields of hemin, hemoglobin, and apohemoglobin. Possible applications to photoelectron microscopy of heme proteins in biological membranes. Biophys J. 1974 Dec;14(12):933–939. doi: 10.1016/S0006-3495(74)85960-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dam R. J., Nadakavukaren K. K., Griffith O. H. Photoelectron microscopy of cell surfaces. J Microsc. 1977 Nov;111(2):211–217. doi: 10.1111/j.1365-2818.1977.tb00061.x. [DOI] [PubMed] [Google Scholar]
- Griffith O. H., Lesch G. H., Rempfer G. F., Birrell G. B., Burke C. A., Schlosser D. W., Mallon M. H., Lee G. B., Stafford R. G., Jost P. C. Photoelectron microscopy: a new approach to mapping organic and biological surfaces. Proc Natl Acad Sci U S A. 1972 Mar;69(3):561–565. doi: 10.1073/pnas.69.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith O. H., Rempfer G. F., Lesch G. H. A high vacuum photoelectron microscope for the study of biological specimens. Scan Electron Microsc. 1981;(Pt 2):123–130. [PubMed] [Google Scholar]
- Grund S., Engel W., Teufel P. Photoelektronen-Emissionmikroskop und Immunofluoreszenz. J Ultrastruct Res. 1975 Feb;50(2):284–288. doi: 10.1016/s0022-5320(75)80058-x. [DOI] [PubMed] [Google Scholar]
- Henderson D., Weber K. Immuno-electron microscopical identification of the two types of intermediate filaments in established epithelial cells. Exp Cell Res. 1981 Apr;132(2):297–311. doi: 10.1016/0014-4827(81)90106-3. [DOI] [PubMed] [Google Scholar]
- Houle W. A., Brown H. M., Griffith O. H. Photoelectric properties and detection of the aromatic carcinogens benza[a]pyrene and dimethylbenzanthracene. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4180–4184. doi: 10.1073/pnas.76.9.4180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houle W. A., Engel W., Willig F., Rempfer G. F., Griffith O. H. Depth of information in photoelectron microscopy. Ultramicroscopy. 1982;7(4):371–380. doi: 10.1016/0304-3991(82)90261-3. [DOI] [PubMed] [Google Scholar]
- Johnson L. V., Walsh M. L., Chen L. B. Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A. 1980 Feb;77(2):990–994. doi: 10.1073/pnas.77.2.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
- Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin J. J. Monoclonal antibodies against myofibrillar components of rat skeletal muscle decorate the intermediate filaments of cultured cells. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2335–2339. doi: 10.1073/pnas.78.4.2335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nadakavukaren K. K., Rempfer G. F., Griffith O. H. Photoelectron microscopy of cell surface topography. J Microsc. 1981 Jun;122(Pt 3):301–307. doi: 10.1111/j.1365-2818.1981.tb01270.x. [DOI] [PubMed] [Google Scholar]
- Osborn M., Webster R. E., Weber K. Individual microtubules viewed by immunofluorescence and electron microscopy in the same PtK2 cell. J Cell Biol. 1978 Jun;77(3):R27–R34. doi: 10.1083/jcb.77.3.r27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun T. T., Green H. Immunofluorescent staining of keratin fibers in cultured cells. Cell. 1978 Jul;14(3):469–476. doi: 10.1016/0092-8674(78)90233-7. [DOI] [PubMed] [Google Scholar]
- Webster R. E., Osborn M., Weber K. Visualization of the same PtK2 cytoskeletons by both immunofluorescence and low power electron microscopy. Exp Cell Res. 1978 Nov;117(1):47–61. doi: 10.1016/0014-4827(78)90426-3. [DOI] [PubMed] [Google Scholar]











