Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jul;80(13):4114–4118. doi: 10.1073/pnas.80.13.4114

Antigenically distinct subpopulations of myeloid progenitor cells (CFU-GM) in human peripheral blood and marrow.

D Ferrero, H E Broxmeyer, G L Pagliardi, S Venuta, B Lange, S Pessano, G Rovera
PMCID: PMC394211  PMID: 6191330

Abstract

Two types of progenitor cells of the human granulocytic and monocytic lineages (CFU-GM) can be distinguished by using mouse monoclonal antibodies against human hemopoietic cells. Type 1 CFU-GM contribute all of the peripheral blood CFU-GM as well as a small fraction of bone marrow CFU-GM and express surface antigens recognized by "anti-lymphomonocytic" monoclonal antibodies S3-13 and S17-25 but not the antigens recognized by R1B19 and WGHS-29-1 (two monoclonal antibodies that react with all the cells of the granulocytic lineage). Type 2 CFU-GM are present only in the marrow and react with S3-13, R1B19, and WGHS-29-1. Partial reactivity with S17-25 was observed only in the complement-dependent cytotoxicity test. In vitro culture of type 1 CFU-GM in liquid medium in the presence of granulocyte-macrophage colony-stimulatory factor (GM-CSF) generates colony-forming cells that have the surface phenotype of type 2 CFU-GM. This finding supports the idea of two different stages of maturation of myelomonocytic progenitor cells represented by type 1 and type 2 CFU-GM.

Full text

PDF
4114

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradley T. R., Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966 Jun;44(3):287–299. doi: 10.1038/icb.1966.28. [DOI] [PubMed] [Google Scholar]
  2. Brockhaus M., Magnani J. L., Herlyn M., Blaszczyk M., Steplewski Z., Koprowski H., Ginsburg V. Monoclonal antibodies directed against the sugar sequence of lacto-N-fucopentaose III are obtained from mice immunized with human tumors. Arch Biochem Biophys. 1982 Sep;217(2):647–651. doi: 10.1016/0003-9861(82)90546-x. [DOI] [PubMed] [Google Scholar]
  3. Chervenick P. A., Boggs D. R. Bone marrow colonies: stimulation in vitro by supernatant from incubated human blood cells. Science. 1970 Aug 14;169(3946):691–692. doi: 10.1126/science.169.3946.691. [DOI] [PubMed] [Google Scholar]
  4. Di Persio J. F., Brennan J. K., Lichtman M. A., Speiser B. L. Human cell lines that elaborate colon-stimulating activity for the marrow cells of man and other species. Blood. 1978 Mar;51(3):507–519. [PubMed] [Google Scholar]
  5. Fitchen J. H., Ferrone S., Quaranta V., Molinaro G. A., Cline M. J. Monoclonal antibodies to HLA-A,B, and Ia-like antigens inhibit colony formation by human myeloid progenitor cells. J Immunol. 1980 Nov;125(5):2004–2008. [PubMed] [Google Scholar]
  6. Gooi H. C., Feizi T., Kapadia A., Knowles B. B., Solter D., Evans M. J. Stage-specific embryonic antigen involves alpha 1 goes to 3 fucosylated type 2 blood group chains. Nature. 1981 Jul 9;292(5819):156–158. doi: 10.1038/292156a0. [DOI] [PubMed] [Google Scholar]
  7. Inoue S., Ottenbreit M. J. Heterogeneity of human colony-forming cells. Blood. 1978 Feb;51(2):195–206. [PubMed] [Google Scholar]
  8. Jacobsen N., Broxmeyer H. E., Grossbard E., Moore M. A. Colony-forming units in diffusion chambers (CFU-d) and colony-forming units in agar culture (CFU-c) obtained from normal human bone marrow: a possible parent-progeny relationship. Cell Tissue Kinet. 1979 Mar;12(2):213–226. doi: 10.1111/j.1365-2184.1979.tb00127.x. [DOI] [PubMed] [Google Scholar]
  9. Jacobsen N., Broxmeyer H. E., Grossbard E., Moore M. A. Diversity of human granulopoietic precursor cells: separation of cells that form colonies in diffusion chambers (CFU-d) from populations of colony-forming cells in vitro (CFU-c) by velocity sedimentation. Blood. 1978 Jul;52(1):221–232. [PubMed] [Google Scholar]
  10. Johnson G. R., Dresch C., Metcalf D. Heterogeneity in human neutrophil, macrophage and eosinophil progenitor cells demonstrated by velocity sedimentation separation. Blood. 1977 Nov;50(5):823–831. [PubMed] [Google Scholar]
  11. Kaplan M. E., Clark C. An improved rosetting assay for detection of human T lymphocytes. J Immunol Methods. 1974 Jul;5(2):131–135. doi: 10.1016/0022-1759(74)90003-9. [DOI] [PubMed] [Google Scholar]
  12. Levine M. N., Fay J. W., Jones N. H., Metzgar R. S., Haynes B. F. Phenotypic characterization of human bone marrow granulocyte-macrophage forming progenitor cells. Blood. 1981 Nov;58(5):1047–1049. [PubMed] [Google Scholar]
  13. Metcalf D., MacDonald H. R. Heterogeneity of in vitro colony- and cluster-forming cells in the mouse marrow: segregation by velocity sedimentation. J Cell Physiol. 1975 Jun;85(3):643–654. doi: 10.1002/jcp.1040850317. [DOI] [PubMed] [Google Scholar]
  14. Moore M. A., Williams N., Metcalf D. In vitro colony formation by normal and leukemic human hematopoietic cells: characterization of the colony-forming cells. J Natl Cancer Inst. 1973 Mar;50(3):603–623. doi: 10.1093/jnci/50.3.603. [DOI] [PubMed] [Google Scholar]
  15. Moore M. A., Williams N., Metcalf D. Purification and characterisation of the in vitro colony forming cell in monkey hemopoietic tissue. J Cell Physiol. 1972 Apr;79(2):283–292. doi: 10.1002/jcp.1040790213. [DOI] [PubMed] [Google Scholar]
  16. Perussia B., Trinchieri G., Lebman D., Jankiewicz J., Lange B., Rovera G. Monoclonal antibodies that detect differentiation surface antigens on human myelomonocytic cells. Blood. 1982 Feb;59(2):382–392. [PubMed] [Google Scholar]
  17. Pike B. L., Robinson W. A. Human bone marrow colony growth in agar-gel. J Cell Physiol. 1970 Aug;76(1):77–84. doi: 10.1002/jcp.1040760111. [DOI] [PubMed] [Google Scholar]
  18. Pluznik D. H., Sachs L. The cloning of normal "mast" cells in tissue culture. J Cell Physiol. 1965 Dec;66(3):319–324. doi: 10.1002/jcp.1030660309. [DOI] [PubMed] [Google Scholar]
  19. Rovera G., Ferrero D., Pagliardi G. L., Vartikar J., Pessano S., Bottero L., Abraham S., Lebman D. Induction of differentiation of human myeloid leukemias by phorbol diesters: phenotypic changes and mode of action. Ann N Y Acad Sci. 1982 Dec 10;397:211–220. doi: 10.1111/j.1749-6632.1982.tb43428.x. [DOI] [PubMed] [Google Scholar]
  20. Salmon S. E., Buick R. N. Preparation of permanent slides of intact soft-agar colony cultures of hematopoietic and tumor stem cells. Cancer Res. 1979 Mar;39(3):1133–1136. [PubMed] [Google Scholar]
  21. Winchester R. J., Ross G. D., Jarowski C. I., Wang C. Y., Halper J., Broxmeyer H. E. Expression of Ia-like antigen molecules on human granulocytes during early phases of differentiation. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4012–4016. doi: 10.1073/pnas.74.9.4012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wu A. M., Siminovitch L., Till J. E., McCulloch E. A. Evidence for a relationship between mouse hemopoietic stem cells and cells forming colonies in culture. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1209–1215. doi: 10.1073/pnas.59.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yam L. T., Li C. Y., Crosby W. H. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol. 1971 Mar;55(3):283–290. doi: 10.1093/ajcp/55.3.283. [DOI] [PubMed] [Google Scholar]
  24. Young N. S., Hwang-Chen S. P. Anti-K562 cell monoclonal antibodies recognize hematopoietic progenitors. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7073–7077. doi: 10.1073/pnas.78.11.7073. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES