Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jul;80(13):4124–4128. doi: 10.1073/pnas.80.13.4124

Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholesterolemia heterozygotes.

D W Bilheimer, S M Grundy, M S Brown, J L Goldstein
PMCID: PMC394213  PMID: 6575399

Abstract

In subject with heterozygous familial hypercholesterolemia (FH), a 50% deficiency of receptors for plasma low density lipoprotein (LDL) impairs the removal of LDL from plasma and produces hypercholesterolemia. In these patients mevinolin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, blocks cholesterol synthesis and lowers plasma LDL levels. To determine the mechanism for the LDL-lowering effect, we administered 131I-labeled LDL intravenously to six FH heterozygotes before and during treatment with mevinolin and calculated the apparent fractional catabolic rate (FCR) and synthetic rate for LDL. After mevinolin treatment, the mean plasma LDL-cholesterol level declined from 262 to 191 mg/dl (27% decrease), the mean FCR for 131I-labeled LDL increased from 0.30 to 0.41 pools per day (37% increase), and the mean calculated synthetic rate for LDL-protein did not change significantly. In one of FH heterozygote with an ileal bypass and in another who received colestipol, the addition of mevinolin caused, respectively, a 41% and 60% decrease in plasma LDL levels and a 60% and 100% increase in the FCR for plasma LDL. The contribution of receptor-dependent pathways to the FCR for plasma LDL was estimated in three FH heterozygotes by simultaneous measurements of the FCR for native 131I-labeled LDL and 125I-labeled glucosylated LDL, which does not bind to LDL receptors. Whereas the removal rate for native LDL increased after mevinolin treatment, the removal rate for glucosylated LDL did not change. The current data suggest that mevinolin alone or mevinolin plus bile acid depletion (i.e., ileal bypass or colestipol therapy) decreases plasma LDL levels primarily by raising the number of LDL receptors and, thus, enhancing the removal of LDL from plasma.

Full text

PDF
4124

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bilheimer D. W., Goldstein J. L., Grundy S. M., Brown M. S. Reduction in cholesterol and low density lipoprotein synthesis after portacaval shunt surgery in a patient with homozygous familial hypercholesterolemia. J Clin Invest. 1975 Dec;56(6):1420–1430. doi: 10.1172/JCI108223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bilheimer D. W., Stone N. J., Grundy S. M. Metabolic studies in familial hypercholesterolemia. Evidence for a gene-dosage effect in vivo. J Clin Invest. 1979 Aug;64(2):524–533. doi: 10.1172/JCI109490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bilheimer D. W., Watanabe Y., Kita T. Impaired receptor-mediated catabolism of low density lipoprotein in the WHHL rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1982 May;79(10):3305–3309. doi: 10.1073/pnas.79.10.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Endo A., Tsujita Y., Kuroda M., Tanzawa K. Inhibition of cholesterol synthesis in vitro and in vivo by ML-236A and ML-236B, competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Eur J Biochem. 1977 Jul 1;77(1):31–36. doi: 10.1111/j.1432-1033.1977.tb11637.x. [DOI] [PubMed] [Google Scholar]
  5. Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
  6. Goldstein J. L., Sobhani M. K., Faust J. R., Brown M. S. Heterozygous familial hypercholesterolemia: failure of normal allele to compensate for mutant allele at a regulated genetic locus. Cell. 1976 Oct;9(2):195–203. doi: 10.1016/0092-8674(76)90110-0. [DOI] [PubMed] [Google Scholar]
  7. Kesaniemi Y. A., Witztum J. L., Steinbrecher U. P. Receptor-mediated catabolism of low density lipoprotein in man. Quantitation using glucosylated low density lipoprotein. J Clin Invest. 1983 Apr;71(4):950–959. doi: 10.1172/JCI110849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kovanen P. T., Bilheimer D. W., Goldstein J. L., Jaramillo J. J., Brown M. S. Regulatory role for hepatic low density lipoprotein receptors in vivo in the dog. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1194–1198. doi: 10.1073/pnas.78.2.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Langer T., Strober W., Levy R. I. The metabolism of low density lipoprotein in familial type II hyperlipoproteinemia. J Clin Invest. 1972 Jun;51(6):1528–1536. doi: 10.1172/JCI106949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MATTHEWS C. M. The theory of tracer experiments with 131I-labelled plasma proteins. Phys Med Biol. 1957 Jul;2(1):36–53. doi: 10.1088/0031-9155/2/1/305. [DOI] [PubMed] [Google Scholar]
  11. Mabuchi H., Haba T., Tatami R., Miyamoto S., Sakai Y., Wakasugi T., Watanabe A., Koizumi J., Takeda R. Effect of an inhibitor of 3-hydroxy-3-methyglutaryl coenzyme A reductase on serum lipoproteins and ubiquinone-10-levels in patients with familial hypercholesterolemia. N Engl J Med. 1981 Aug 27;305(9):478–482. doi: 10.1056/NEJM198108273050902. [DOI] [PubMed] [Google Scholar]
  12. Mabuchi H., Sakai T., Sakai Y., Yoshimura A., Watanabe A., Wakasugi T., Koizumi J., Takeda R. Reduction of serum cholesterol in heterozygous patients with familial hypercholesterolemia. Additive effects of compactin and cholestyramine. N Engl J Med. 1983 Mar 17;308(11):609–613. doi: 10.1056/NEJM198303173081101. [DOI] [PubMed] [Google Scholar]
  13. Mahley R. W., Innerarity T. L., Weisgraber K. H. Alterations in metabolic activity of plasma lipoproteins following selective chemical modification of the apoproteins. Ann N Y Acad Sci. 1980;348:265–280. doi: 10.1111/j.1749-6632.1980.tb21306.x. [DOI] [PubMed] [Google Scholar]
  14. Sasaki J., Cottam G. L. Glycosylation of LDL decreases its ability to interact with high-affinity receptors of human fibroblasts in vitro and decreases its clearance from rabbit plasma in vivo. Biochim Biophys Acta. 1982 Nov 12;713(2):199–207. doi: 10.1016/0005-2760(82)90237-5. [DOI] [PubMed] [Google Scholar]
  15. Shepherd J., Bicker S., Lorimer A. R., Packard C. J. Receptor-mediated low density lipoprotein catabolism in man. J Lipid Res. 1979 Nov;20(8):999–1006. [PubMed] [Google Scholar]
  16. Shepherd J., Packard C. J., Bicker S., Lawrie T. D., Morgan H. G. Cholestyramine promotes receptor-mediated low-density-lipoprotein catabolism. N Engl J Med. 1980 May 29;302(22):1219–1222. doi: 10.1056/NEJM198005293022202. [DOI] [PubMed] [Google Scholar]
  17. Soutar A. K., Myant N. B., Thompson G. R. The metabolism of very low density and intermediate density lipoproteins in patients with familial hypercholesterolaemia. Atherosclerosis. 1982 Jun;43(2-3):217–231. doi: 10.1016/0021-9150(82)90024-7. [DOI] [PubMed] [Google Scholar]
  18. Tobert J. A., Bell G. D., Birtwell J., James I., Kukovetz W. R., Pryor J. S., Buntinx A., Holmes I. B., Chao Y. S., Bolognese J. A. Cholesterol-lowering effect of mevinolin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme a reductase, in healthy volunteers. J Clin Invest. 1982 Apr;69(4):913–919. doi: 10.1172/JCI110530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yamamoto A., Sudo H., Endo A. Therapeutic effects of ML-236B in primary hypercholesterolemia. Atherosclerosis. 1980 Mar;35(3):259–266. doi: 10.1016/0021-9150(80)90124-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES